|  Connection Representation of Quantum Gravity ("Loop Quantum Gravity") | 
In General
  > s.a. connections
  [generalized connections and fluxes]; semiclassical [including relation with continuum].
  * Quantum configuration space:
    A distributional version of the classical space of connections modulo gauge
    transformations (the symbol – denotes closure),
\(\overline{{\cal A}/{\cal G}} = \overline{\cal A}/\overline{\cal G}\) = generalized connections modulo generalized gauge transformations.
* Elementary operators: Heuristically, the Ashtekar-Barbero su(2) connection and its conjugate momentum, (Eai, Aai); In a rigorous approach, the Lie derivatives with respect to the left-invariant vector fields on the copy of SU(2) associated with each edge of a graph in the spatial manifold,
\[\def\ii{{\rm i}}\def\dd{{\rm d}} J{}_{x,e_J}^i\Psi_\gamma(\bar A) = \ii\,(\bar A(e_J)\,\tau^i)^A_B\,{\partial \psi\over\partial(\bar A(e_J)^A_B} = \ii\,{\dd\over\dd t}\,\psi(\bar A(e_1),\ldots,\bar A(e_J)\,{\rm e}^{t\tau^i},\ldots,\bar A(e_N))\;.\]
    or the holonomies along edges and electric fluxes through surfaces.
  * Kinematical Hilbert space:
    The completion of the space Cyl of cylindrical functions, with the measure
    induced by the Haar measure on SU(2); A nice basis to work with has spin
    networks as elements; > s.a. projective limit.
  @ General references: Ashtekar PRL(86),
    PRD(87),
    in(89);
    Fukuyama & Kamimura PRD(90);
    Zegwaard CQG(91);
    Kodama IJMPD(92)gq;
    Mena IJMPD(94)gq/93 [reality conditions];
    Thiemann ACosm(95)gq [transforms],
    CQG(96)gq/95 [reality conditions];
    Rainer gq/99-conf [quantum field theory];
    Ita a0806/HJ [covariance];
    Bianchi et al NPB(09)-a0905 [propagator, from new spin-foam models];
    Thiemann a1010 [lessons from parametrized field theory];
    Wieland a1105 [complex variables];
    Gielen Sigma(11)-a1111 [and connection dynamics];
    Bojowald AIP(12)-a1208 [as an effective theory];
    Ben Achour & Noui PoS-a1501 [analytic continuation];
    Ben Achour PhD(15)-a1511;
    Varadarajan CQG(19)-a1808 [from Euclidean
      to Lorentzian]; > s.a. connection formulation of gravity.
  @ Bibliography: Brügmann gq/93;
    Schilling gq/94;
    Beetle & Corichi gq/97;
    Corichi & Hauser gq/05.
  @ Basic algebra and representations: Ashtekar et al CQG(98)gq [no triad representation];
    Sahlmann JMP(11)gq/02,
    JMP(11)gq/02;
    Sahlmann  & Thiemann CQG(06)gq/03;
    Fleischhack PRL(06),
    CMP(09)mp/04;
    Varadarajan CQG(08) [alternatives];
    Kaminski a1108,
    a1108,
    a1108,
    a1108,
    a1108,
    a1108 [different algebras];
    Ashtekar & Campiglia CQG(12)-a1209 [and covariance under spatial diffeomorphisms];
    Stottmeister & Thiemann a1312 [structural aspects];
    Bahr et al a1506 [new representation and quantum geometry];
    Chagas-Filho a1705.
  @ Kinematical Hilbert space: Fairbairn & Rovelli JMP(04)gq [separability];
    Okołów CQG(05)gq/04 [non-compact G];
    Velhinho CQG(05)gq;
    Cianfrani CQG(11)-a1012 [from BF theory];
    Fleischhack in(07)-a1505 [kinematical uniqueness];
    Carvalho & Franco a1610 [separability];
    Giesel a1707-in.
  @ Projective state space:
    Lanéry & Thiemann JMP(16)-a1411 [states as projective families];
    Lanéry & Thiemann a1510,
    a1510 [semiclassical states].
  @ Discretized versions:
    Renteln & Smolin CQG(89);
    Loll NPB(95)gq,
    PRD(96)gq [real variables],
    NPPS(97)gq,
    PLB(97)gq [det E > 0],
    CQG(98)gq/97 [diffeo constraints];
    Zapata CQG(04)gq [and lattice gauge theory];
    Gambini & Pullin PRL(05)gq/04 [consistent];
    Engle CQG(10)-a0812 [PL];
    Bahr & Thiemann CQG(09) [combinatorial];
    Aastrup & Grimstrup a0911 [and semiclassical states];
    Bahr et al Sigma(12)-a1111 [constraints and diffeomorphisms];
    > s.a. diffeomorphisms; discrete geometry.
  @ Purely spinorial variables: Livine & Tambornino JMP(12)-a1105,
    JPCS(12)-a1109;
    Livine & Tambornino PRD(13)-a1302 [holonomy-flux operator algebra].
  @ Reduced phase space quantization: Giesel & Thiemann CQG(10)-a0711;
    Alesci et al PRD(13)-a1309 [relationship with the full theory].
  @ Other variants: Bianchi GRG(14)-a0907
      [à la Aharonov-Bohm, topological field theory with network of defects];
    Sahlmann CQG(10)-a1006 [with non-degenerate spatial background];
    Bodendorfer et al CQG(13)-a1105 [higher-dimensional],
    Bodendorfer et al CQG(13)-a1203 [without the Hamiltonian constraint];
    Dupuis et al a1201-proc [spinors and twistors];
    Mäkelä a1905 [and Wheeler's 'it-from-bit' proposal];
    > s.a. approaches to canonical qg [including covariant lqg];
      higher-order theories; holonomy [quantum];
      loop representation [including deformations]; modified theories [scalar-tensor];
      other approaches [including group field theory, topos theory]; spin-foam models;
      teleparallel equivalent; twistors.
References > s.a. anomaly; geometrical
  operators; Immirzi Parameter; path-integral quantum gravity;
  phenomenology; philosophy; Wilson Loops.
  @ I: Sen & Butler ThSc(89)nov;
    Bartusiak disc(93)apr;
    Vaas bdw(03)phy/04 [and strings];
    Rovelli pw(03)nov;
    Smolin SA(04)jan.
  @ Books: Ashtekar 88,
    91;
    Thiemann 07;
    Gambini & Pullin 11;
    Vaid & Bilson-Thompson 17;
    Ashtekar & Pullin ed-17 [intro and status];
    Gambini & Pullin 20.
  @ Intros, reviews: Ashtekar ht/92,
    gq/94,
    in(95)gq/93,
    IJMPD(96)ht,
    gq/01-GR16;
    Rovelli CQG(91),
    LRR(98)gq/97;
    Smolin in(92),
    gq/92;
    Ashtekar & Rovelli CQG(92);
    Ashtekar & Lewandowski ht/93-proc;
    Pullin in(97)gq/96;
    Gaul & Rovelli LNP(00)gq/99;
    Thiemann LNP(03)gq/02;
    Ashtekar & Lewandowski CQG(04)gq [intro];
    Smolin ht/04/RMP;
    Pérez gq/04-ln;
    Nicolai et al CQG(05)ht [outside view];
    Liko & Kauffman CQG(06)ht/05 [and knot theory];
    Corichi JPCS(05)gq [geometry];
    Han et al IJMPD(07)gq/05;
    Ashtekar NJP(05);
    Nicolai & Peeters LNP(07)ht/06 [intro];
    Ashtekar AIP(06)gq;
    Thiemann LNP(07)ht/06 [inside view];
    Ashtekar NCB(07)gq [introduction through quantum cosmology],
    a0705-MGXI [faq's];
    Han MSc(07)-a0706;
    Thiemann IJMPA(08)-proc;
    Rovelli LRR(08);
    Mercuri PoS-a1001;
    Sahlmann a1001-conf;
    Rovelli CQG(11)-a1004;
    Date a1004-ln;
    Doná & Speziale a1007-ln;
    Alexandrov & Roche PRP(11)-a1009;
    Rovelli CQG(11)-a1012 [25 years], 
    a1102-ln;
    Bojowald a1101-conf [dynamical introduction];
    Ashtekar LNP(13)-a1201;
    Giesel & Sahlmann PoS-a1203;
    Pullin & Singh a1301-MG13 [lqg session];
    Bojowald PT(13)mar;
    Långvik a1303;
    Ashtekar proc(14)-a1303 [and cosmology];
    Bilson-Thompson & Vaid book(17)-a1402 [pedagogical];
    Chiou IJMPD(15)-a1412;
    Bodendorfer a1607-ln;
    Ashtekar & Pullin book(17)-a1703;
    Moreno a1808-MS;
    Belov a1905-PhD [geometry];
    Ashtekar & Bianchi RPP(21)-a2104.
  @ Quantum configuration space:
    Ashtekar & Isham CQG(92);
    Ashtekar & Lewandowski JMP(95)gq/94,
    JGP(95)ht/94;
    Marolf & Mourão CMP(95)ht/94;
    Döring & de Groote gq/01;
    Freidel et al CQG(13)-a1110 [relationship between holonomy-flux phase space and continuum phase space];
    Freidel & Ziprick CQG(14)-a1308 [twisted geometry];
    Yang & Ma ChPC(19)-a1908 [flux operators].
  @ States: Jacobson & Smolin NPB(88);
    Smolin  in(88);
    Husain NPB(89);
    Brügmann & Pullin NPB(91);
    Ezawa PRP(97)gq/96;
    Lewandowski & Marolf IJMPD(98)gq/97 ["vertex-smooth"];
    Hari Dass & Mathur CQG(07)gq/06;
    Ita a0710;
    Borja et al JPCS(12)-a1110,
    Sigma(12)-a1202 [simple graph with two modes, U(N)];
    Bianchi et al a1605 [squeezed vacua];
    Bianchi et al PRD(16)-a1609 [loop expansion];
    Bianchi et al PRD(19)-a1812 [Bell-network states];
    > s.a. spin networks.
  @ Inner product: Rendall CQG(93)gq;
    Thiemann CQG(98)gq/97;
    Bahr & Thiemann CQG(07)gq/06 [approximating].
  @ Measure:
    Baez in(94)ht/93;
    Baez & Sawin JFA(97)qa/95;
    Mourão et al JMP(99)ht/97;
    > s.a. connection.
  @ Conceptual: Vidotto a1309-conf [atomism and relationalism];
    Wüthrich in(17) [classical spacetime recovery];
    Gilbert & Loveridge a2004 [interviews and analysis]; & Vera Matarese.
Constraints and Hamiltonian
  > s.a. classical version [including reality conditions].
  * Gauss law: Can be written
    \(\cal G\)vi
    = ∑I
    J iv,
    I , for all vertices v (I labels the edges at
    v) and internal directions i.
  * Solutions of constraints:
    Heuristically, the quantum Gauss and scalar constraints have been solved for a
    large set of states which are concentrated on loops in a hypersurface, as well
    as for some "topological" ones.
  @ Hamiltonian:
    Blencowe NPB(90);
    Thiemann PLB(96)gq,
    CQG(98)gq/96,
    CQG(98)gq/96 [operator];
    Smolin gq/96 [and long-range correlations];
    Borissov et al CQG(97)gq [matrix elements];
    Gambini et al IJMPD(98)gq/97 [algebra];
    Neville PRD(99)gq/98 [correlations and non-locality];
    Di Bartolo et al CQG(00)gq/99 [algebra];
    Rovelli PRD(99)gq/98 [projector];
    Gaul & Rovelli CQG(01) [all irrep's of SU(2)];
    Ita a0706,
    a0707 [general solution];
    Alesci et al PRD(12)-a1109 [spin-foam models and Euclidean solutions];
    Bonzom & Laddha Sigma(12)-a1110 [lessons from toy models];
    Alesci et al PRD(13)-a1306 [matrix elements];
    Laddha a1401 [search for an off-shell anomaly free-version];
    Lewandowski & Sahlmann PRD(15)-a1410 [symmetric];
    Yang & Ma PLB(15)-a1507 [new proposal];
    Assanioussi et al PRD(15)-a1506 [new proposal];
    Lewandowski & Lin PRD(17)-a1606 [anomaly-free constraints and Minkowski condition];
    Zhang et al PRD(18)-a1805;
    Mäkinen a1910-PhD;
    Varadarajan a2101
      [Euclidean dynamics in terms of Electric Shift];
    Zhang et al a2012,
    a2102 [coherent state expectation value].
  @ Hamiltonian, regularization: Borissov PRD(97)gq/94 [and algebra];
    Pérez PRD(06)gq/05 [ambiguities];
    Alesci & Rovelli PRD(10)-a1005 [and spin-foam dynamics];
    Alesci JPCS(12)-a1110 [regularized proposal].
  @ Hamiltonian, approaches: Gambini & Pullin CQG(96)gq [and knot theory];
    Ita CQG(14)-a0901v5 [affine group formalism];
    Yang & Ma a1505 [graphical method];
    Alesci et al a1606 [projections of intertwiners on spin coherent states];
    Livine a1704 [coarse graining and holographic dynamics].
  @ Diffeomorphism constraints: Renteln CQG(90) [lattice regularization];
    Loll CQG(98) [on a lattice];
    Arnsdorf & García CQG(99)gq/98 [vs vector];
    Koslowski gq/06 [stratified];
    Ita HJ-a0806,
    a0806 [and Kodama state, dimensional extension];
    Laddha & Varadarajan CQG(11)-a1105;
    Varadarajan JPCS(12),
    CQG(13)-a1306.
  @ Master Constraint Programme: Thiemann CQG(06)gq/03,
    CQG(06)gq/05;
    Han & Ma PLB(06)gq/05;
    Han CQG(10) [path integral];
    > s.a. dirac quantization.
  @ Simplicity constraints: Bodendorfer et al CQG(13)-a1105 [quantum];
    Anzà & Speziale CGQ(15)-a1409 [secondary].
  @ Simplified theories: Henderson et al PRD(13)-a1204,
    PRD(13)-a1210 [U(1)\(^3\) toy model];
    Lewandowski & Lin PRD(17)-a1606 [U(1)\(^3\) toy model].
Representations, Special Solutions and Related Topics
  > s.a. minisuperspace; models
  [with symmetries]; quantum cosmology and lqc.
  * Holonomy representation: The Ashtekar-Lewandowski
    vacuum is independent from any classical background; It is maximally peaked on the configuration
    describing a totally degenerate spatial geometry, and maximally spread in the canonically conjugate
    variables encoding the extrinsic geometry.
  * Flux representation: A representation dual to the
    Ashtekar-Lewandowski one, based on the Dittrich-Geiller vacuum which is diffeomorphism-invariant,
    peaked on flat connections and maximally spread in spatial geometry; Appears to be more natural for
    discussing semiclassical states and spin foams.
  * Koslowski-Sahlmann representation: A generalization
    of the representation underlying lqg; The vacuum is peaked on a certain backgound geometry and not
    invariant under spatial diffeomorphisms, and state labels include a background electric field which
    describes 3D excitations of the triad.
  @ Vacuum: Varadarajan PRD(02)gq [gravitons],
    CQG(05)gq/04 [graviton vacuum];
    Dittrich & Geiller CQG(15)-a1401
    + CQG+ [vacuum state].
  @ Holonomy representation:
    Bilski a2012 [lattice regularization method].
  @ Flux representation: Baratin et al CQG(11)-a1004;
    Dittrich & Geiller CQG(15)-a1412 [classical framework];
    Cattaneo & Pérez a1611 [Poisson brackets of 2D smeared fluxes].
  @ Koslowski-Sahlmann representation: Koslowski & Sahlmann Sigma(12) [vacuum with non-degenerate geometry];
    Campiglia & Varadarajan CQG(14)-a1311 [diffeomorphism constraint],
    CQG(14)-a1406 [configuration space],
    CQG(15)-a1412 [asymptotically flat spacetimes].
  @ Special solutions: Borja et al JPCS(11)-a1012 [simple model of 2 vertices linked by edges];
    Beetle et al IJMPD(16)-a1603,
    a1706 [homogeneous and isotropic cosmologies];
    Mäkinen a2004 [quantum-reduced, operators];
    > s.a. anti-de sitter spacetime [asymptotically AdS];
      FLRW models; gowdy models;
      inflation; Lemaître-Tolman-Bondi
      Solutions.
  @ Other topics: Torre CQG(88) [propagator];
    Arnsdorf & García CQG(99)gq/98 [spinorial states from topology];
    Speziale a0810-ASL [n-point functions];
    Yang & Ma PRD(09)-a0812 [quasilocal energy];
    Botelho GRG(12)-a0902 [and fermionic string Ising models];
    Bahr CQG(11)-a1006 [the EPRL model and knottings in the physical Hilbert space];
    Borja et al CQG(11)-a1010,
    a1110-proc,
    AIP(12)-a1201 [U(N) tools];
    Rovelli & Zhang CQG(11) [3-point functions];
    Yamashita et al PTEP(14)-a1312 [generalized BF state];
    Guo JMP(18)-a1611 [transition probability spaces];
    > s.a. group theory; M-theory [duality];
      quantum simulations.
With Matter / Cosmological Constant > s.a. matter phenomenology;
  non-commutative field theory; supergravity;
  symmetry breaking.
  * With cosmological constant:
    Need to deform SU(2) to SU(2)q , with q =
    exp{2π/k+2}, k:= 6π/G2Λ.
  @ Scalar fields: Kiefer PLB(89);
    Matschull CQG(93)gq;
    Han & Ma CQG(06)gq;
    Ita gq/07v1,
    a0710v1;
    Domagała et al PRD(10)-a1009;
    Alesci et al PRD(15)-a1504 [Hamiltonian operator];
    Lewandowski & Sahlmann a1507 [Hilbert space and constraint].
  @ Einstein-Maxwell theory: Gambini & Pullin PRD(93)ht/92 [and loop representation];
    Krasnov PRD(96)gq/95 [with fermions].
  @ Fermions and Higgs: Baez & Krasnov JMP(98)ht/97;
    Thiemann CQG(98)gq/97;
    Montesinos & Rovelli CQG(98)gq;
    Bojowald et al PRD(08)-a0710 [and early-universe cosmology];
    Ita a0805 [scalar and fermion, and Kodama state];
    Bojowald & Das PRD(08) [fermions];
    Gambini & Pullin PLB(15)-a1506 [no fermion doubling];
    Barnett & Smolin a1507;
    Mansuroglu & Sahlmann PRD(21)-a2011 [fermion spins];
    > s.a. lattice fermions.
  @ Connection with string theory: Gambini & Pullin IJMPD(14)-a1406-GRF;
    Vaid a1711 [via quantum geometry]. 
  @ Other matter: Thiemann CQG(98)gq/97 [standard model];
    Lambiase & Singh PLB(03) [matter/antimatter];
    Gambini et al GRG(06)gq/04-in [Yang-Mills fields];
    Date & Hossain Sigma(12)-a1110 [rev];
    Husain & Pawlowski a1305-MG13 [computable framework];
    Okołów JMP(17)-a1601 [arbitrary tensor fields, projective quantum states];
    Liegener & Thiemann PRD(16)-a1605 [Einstein-Yang-Mills theory, fundamental spectrum];
    Mansuroglu & Sahlmann a2011 [arbitrary spin].
  @ Cosmological constant: Alexander & Calcagni FP(08)-a0807 [as a Fermi-liquid theory];
    Dupuis & Girelli PRD(13)-a1307 [and quantum groups],
    PRD(14)-a1311 [observables];
    > s.a. cosmological constant.
  @ Chern-Simons-Kodama state:
    Brügmann et al NPB(92);
    Crane ht/93-in;
    Mena CQG(95)gq/94 [non-normalizable];
    Gambini et al PLB(97)gq;
    Soo CQG(02)gq/01;
    Smolin ht/02 [overview];
    Witten gq/03;
    Freidel & Smolin CQG(04)ht/03 [linearized];
    Alexander et al gq/05 [fermionic sectors];
    Randono gq/05 [arbitrary Immirzi parameter],
    gq/06,
    gq/06,
    PhD(07)-a0709 [real Immirzi parameter];
    Ita a0705,
    a0705v1,
    a0706 [canonical and path integral];
    Ita a0805/Sigma,
    HJ-a0901 [Chang-Soo variables],
    a0806,
    a0904;
    > s.a. minisuperspace; quantum gauge theory.
Online Resources
  > Online seminars, blogs, videos:
    International Loop Quantum Gravity Seminar talks,
    portal and blog;
    YouTube 2019 video.
  > Reference pages:
    see Wikipedia page;
    Answers.com page;
    Dan Christensen's page;
    Seth Major's reading guide.
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 22 apr 2020