|  Quantization of First-Class Constrained Systems | 
In General
  > s.a. quantization of second-class systems; dirac procedure.
  * Methods: There are various
    methods; The Dirac and reduced-phase-space formalisms are not equivalent,
    but this is not obvious from some of the simplest examples (like QED without
    sources); When they differ, the Dirac procedure seems to be the correct one
    if the constrained degrees of freedom are in principle excitable; They are
    equivalent for cotangent bundle phase spaces with canonical symplectic structure
    [@ Puta LMP(84)];
    When the constraints are power of a linear function (irregular, type II), the
    Hamiltonian and Lagrangian descriptions may be dynamically inequivalent.
Reduced Phase Space
  * Idea: Use the space
    of orbits of the constraint vector fields on the constraint surface
    Γ' as phase space.
  * Example: Consider the gauge vector
    field v on Γ', with gab
    vavb
    = λ2 (or λ?); Then, go to the space of
    orbits of v, on which there is a metric hab;
    Wave functions are densities of weight 1/2 on this reduced phase space, and the
    Hamiltonian is H = −\(\hbar\)2
    hab
    Pa
    Pb + potential; When defining the inner
    product, the measure should be λ1/2
    dvh, not just
    dvh.
  @ References: Blyth & Isham PRD(75) [applications];
    Pons et al JPA(99)mp/98 [theory for gauge theory];
    Chingangbam & Sharan qp/99 [examples];
    Muslih NCB(02)mp/01;
    Thiemann CQG(06)gq/04 [and partial observables];
    Anastopoulos gq/04 [geometric procedure].
Batalin-Vilkovisky, Batalin-Fradkin-Vilkovisky, BRST Methods
  > s.a. BRST quantization; lagrangian dynamics;
  renormalization; symplectic structures.
  * Idea: The BV
    method is a powerful Lagrangian method, generalizing the BRST approach, to analyze
    functional integrals with (infinite-dimensional) gauge symmetries, invented to fix gauges
    associated with symmetries that do not close off-shell; The BFV method is Hamiltonian.
  * Fradkin-Vilkovisky theorem:
    The Batalin-Fradkin-Vilkovisky path integral is complete independent of the gauge
    fixing 'fermion', even within a non-perturbative context.
  @ General references: Hasiewicz et al JMP(91) [and Gupta-Bleuler];
    Govaerts & Troost CQG(91) [BFV and Faddeev];
    Khudaverdian & Nersessian MPLA(93) [geometrical];
    Batalin & Tyutin IJMPA(96)ht/95 [perturbative equivalence];
    Govaerts & Scholtz JPA(04)ht [Fradkin-Vilkovisky theorem];
    Bashkirov et al ht/05 [field theories, necessary and sufficient conditions];
    Bashkirov & Sardanashvily ht/06 [and Ward identities];
    Fredenhagen & Rejzner CMP(12)-a1101 [on generic globally hyperbolic spacetimes];
    Bonechi et al a1907 [equivariant extension];
    Rejzner a2004-proc [intro and motivation].
  @ BV-BFV formalism, intros: in Cattaneo & Schiavina LMP(16)-a1607;
    Mnev a1707-in [and topological quantum field theory];
    Cattaneo & Moshayedi a1905-ln.
  @  Batalin-Vilkovisky method: Albert et al JMP(10)-a0812 [in finite dimensions];
    Anselmi PRD(14)-a1311 [and background-field method];
    Getzler JHEP(16)-a1511 [for the spinning particle];
    Clavier & Nguyen a1609-proc [as integration for polyvectors];
    Iseppi RVMP(19)-a1610 [application to a matrix model];
    Ikeda & Strobl a2007 [from BFV, and spacetime covariance].
  @ And geometric quantization:
    Duval et al CMP(90);
    Figueroa-O'Farrill & Kimura CMP(91).
  @ Specific types of theories: McMullan JMP(87) [BFV and Yang-Mills theories];
    Browning & McMullan JMP(87) [BFV for other theories];
    Hüffel APS(02)ht-in [2-point non-commutative Yang-Mills model];
    Dayi IJMPA(04)ht/03 [generalized fields];
    Bashkirov ht/04 [BV, quadratic \(\cal L\)];
    Fredenhagen &Rejzner CMP(13)-a1110 [perturbative algebraic quantum field theory];
    Rejzner PhD-a1111 [locally covariant field theory];
    > s.a. 3D quantum gravity; BF theories;
      modified QED [scalar]; perturbative
      quantum gravity; quantization of gauge theories.
Path-Integral Quantization > s.a. Faddeev-Popov;
  Ghost Fields; path integrals.
  * First-class: Choose gauge-fixing
    conditions χi(q,
    p) = f i,
    for fixed f i,
    with {χi,
    χj}
    = 0 and det|{C, χ}| ≠ 0; Then
Z = ∫ \(\cal D\)p \(\cal D\)q δ(χi − f i) δ(Cj) det|{C, χ}| exp{ i ∫ dt \((\dot pq-H)\)} .
  @ General references:
    Garczyński PLB(87);
    Abrikosov PLA(93);
    Ferraro et al PLB(94);
    Muslih & Güler NCB(97);
    Klauder & Shabanov qp/98;
    Muslih mp/00;
    Rabei NCB(00);
    Klauder LNP(01)ht/00 [rev];
    Ohnuki JPA(04) [particle on the D-sphere];
    LaChapelle a1212.
  @ Coherent states: Klauder AP(97)qp/96,
    qp/96,
    qp/96;
    Klauder & Shabanov PLB(97)ht/96 [including Yang-Mills];
    Junker & Klauder EPJC(98)qp/97,
    in(99)ht/98 [with fermions].
Other Methods > s.a. deformation
  quantization [Fedosov, Moyal]; Faddeev-Jackiw Method.
  * Expectation values: Define as physical
    states those for which \(\langle\)ψ |C | ψ\(\rangle\)
    = 0; One drawback is that it is not a linear condition on the states, so it is not
    preserved by linear combinations and the solutions don't obey the superposition
    principle–they don't form a subspace of \(\cal H\).
  * Triplectic: The
    Sp(2)-covariant version of the field-antifield quantization in the
    Lagrangian formalism.
  @ Expectation values: Marinov FPL(89);
    Kheyfets & Miller PRD(95)gq/94;
    Kheyfets et al IJMPA(96) [for gravity].
  @ Triplectic: Batalin & Marnelius NPB(96)ht/95;
    Geyer et al MPLA(99)ht/98;
    Grigoriev PLB(99) [Lie group structure];
    Geyer & Lavrov IJMPA(04) [general coordinates];
      [> s.a. BRST formalism].
  @ Hamilton-Jacobi approach: Baleanu & Güler NCB(99),
    NCB(00);
    Güler NCB(05).
  @ Rieffel induction: Landsman dg/96;
    Wren JGP(98).
  @ Related topics: Dayi PLB(89) [gauge fixing];
    Klauder qp/98-fs [infinite-dimensional];
    Savvidou & Anastopoulos CQG(00)gq/99 [histories quantization];
    Rabei et al PRA(02) [WKB approximation, semiclassical];
    Little & Klauder PRD(05)gq [second-class on quantization, model];
    Bojowald et al RVMP(09)-a0804 [effective constraints];
    Wachsmuth & Teufel PRA(10)-a1005 [configuration-space constraints in terms of confining potential].
References > s.a. coherent states;
  geometric quantization; quantum states [semiclassical].
  * Remark: Grundling
    has proposed a method for obtaining an algebra on reduced phase space,
    which works even for classically ergodic systems, where other methods
    like group averaging fail (from Ray).
  @ Texts, revs: Gitman & Tyutin 90;
    Klauder LNP(01)ht/00;
    Grundling RPMP(06) [Grundling, Hurst approach];
    Rothe & Rothe 10;
    Prokhorov & Shabanov 11.
  @ General:
    in Ashtekar & Horowitz PRD(82);
    Ashtekar & Stillerman JMP(86);
    Kuchař PRD(87) [factor ordering],
    in(88) [covariant];
    Dresse et al PLB(90);
    Hájíček in(94);
    Klauder qp/96-proc;
    Kaplan et al PRA(97)qp/98;
    Klauder NPB(99)ht;
    Corichi CQG(08)-a0801 [geometrical];
    Brody et al JPA(08),
    JPA(09);
    Gustavsson JPCS(09)-a0903 [symplectic vs metric formulation];
    Fairbairn & Meusburger a1204-in;
    Bojowald & Tsobanjan a1906 [symplectic reduction].
  @ Semiclassical aspects: Kirwin MZ-a0810 [reduction and quantization, semiclassical];
    Bojowald & Tsobanjan RVMP(09),
    PRD(09)-a0906 [effective constraint methods];
    Wachsmuth & Teufel MAMS-a0907 [effective Hamiltonian];
    Tsobanjan AIP(09)-a0911 [leading-order corrections to dynamics]. 
  @ Related topics:
    Goldberg et al JMP(91);
    Rovelli PRL(98) [gauge transformations in quantum mechanics];
    Lavrov et al MPLA(99) [osp(1,2) supersymmetry];
    Facchi et al JOB(04)qp/03 [and Zeno dynamics];
    Konopka & Markopoulou gq/06 [states, from noiseless subsystems];
    > s.a. regularization;
    superselection rules; theta sectors.
Specific Types of Systems
  > s.a. quantum gauge theories; canonical quantum gravity;
  Proca Theory; supergravity.
  * Parametrized field
    theories: Torre and Varadarajan showed that for generic foliations
    emanating from a flat initial slice in D > 2 spacetimes,
    scalar field evolution along arbitrary foliations is not unitarily
    implemented on the Fock space, which implies an obstruction to Dirac
    quantization; The no-go result can be overcome however using lqg techniques.
  @ General references: Banerjee & Chakraborty AP(96) [Chern-Simons];
    Arik & Ünel ht/96 [quadratic C];
    Grundling & Hurst JMP(98) [not preserved by dynamics];
    Montesinos et al PRD(99)gq [general relativity toy model];
    Mišković & Zanelli JMP(03),
    Klauder & Little CQG(06)gq [irregular];
    Serhan et al IJTP(09) [holonomic];
    Belhadi et al AP(14)-a1406 [classically soluble constrained systems];
    Bojowald & Brahma JPA(16)-a1407 [fluctuations and structure functions].
  @ Special configuration spaces:
    Kleinert & Shabanov PLA(97) [on Sd];
    Maraner ht/98 [on a line];
    Ikemori et al MPLA(99)
      [on S2];
    Scardicchio PLA(02) [on S1];
    > s.a. quantum systems.
  @ Reparametrization-invariant: Klauder JPA(01)qp/00 [ultralocal fields];
    Varadarajan PRD(07)gq/06 [parametrized field theory];
      > s.a. parametrized theories.
  @ Totally constrained: Kodama PTP(95)gq,
    PTP(95)gq [classical and quantum theory];
    Doldán et al IJTP(96)ht/94;
    Olmedo IJMPD(16)-a1604 [Schrödinger vs Heisenberg  pictures].
  @ Generally covariant: Montesinos GRG(01)gq/00 [relational evolution];
    Sforza PhD(00)gq;
    > s.a. types of quantum field theories.
  @ Time-dependent constraints: Muslih CzJP(02)mp/01 [canonical path integral].
@ Discrete spacetime lattice: Di Bartolo et al CQG(02)gq.
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 26 dec 2020