|  Gauge Field Theories | 
In General
  > s.a. gauge symmetry [including emergence];
  history of physics; lorentz group phenomenology;
  symmetry.
  * Motivation: Make a
    global symmetry into a local one (observers at different points can
    choose independently); Masslessness of gauge particles related to
    renormalizability (but see the Higgs mechanism); Can treat monopoles
    without singularities in potentials; Geometric picture of fields
    obtained using fiber bundle language.
  * History: The
    principle was introduced by Weyl; The fiber bundle picture appeared
    in the late 1960s, but was accepted only around 1973.
  * Approaches: Modern
    mathematical formulations include ordinary differential geometry of
    fiber bundles, compactified extra dimensions in Kaluza-Klein theories,
    Grassmanian models, non-commutative geometry, and transitive Lie algebroids.
  * Idea: In the differential
    geometry approach, the basic objects are a semisimple (in order for
    it to have a non-degenerate metric) Lie group G, with Lie
    algebra g, and a principal G-bundle P over
    spacetime; The variables are a g-valued connection 1-form
    (i e) A on this principal fiber bundle (often used
    interchangeably with a gauge potential, the pullback of the connection
    1-form), and possibly coupled matter fields (cross-sections φ
    of associated G-bundles); If (i e) F is the
    curvature of the connection, and D its associated covariant
    derivative, one field equation is the Bianchi identity,
DF := dF + [A, F] = 0 ;
    Other field equations will depend on the form of the action chosen (careful,
    F = dA + A ∧ A ≠ DA !).
  @ Texts and reviews: Göckeler & Schücker 87;
    Cheng & Li AJP(88)jul [RL];
    Chan & Tsou 93;
    Tsou ht/00-ln.
  @ Texts, and differential geometry: Marathe & Martucci 92;
    Naber 00, 11.
  @ Potentials and fields:
    Majumdar & Sharatchandra PRD(01)ht/98 [equivalent potentials];
    Mulder FP-a2103 [are gauge potentials real?].
Line / Loop and Other Variables
  > s.a. BF theory; connection; Field
  Line; holonomy; QCD; quantum
  gauge theory; topological field theories.
  @ Wilson loops:
    Mandelstam AP(62);
    Wu & Yang PRD(75),
    PRD(76),
    PRD(76);
    Kozameh & Newman PRD(85) [differential holonomies and Yang-Mills equations];
    Chan et al AP(86);
    Gambini & Trias NPB(86);
    Diakonov & Petrov PLB(89);
    Bezerra & Letelier CQG(91)refs;
    Rajeev & Turgut JMP(96)ht/95.
  @ Gauge-invariant: Newman & Rovelli PRL(92) [lines of force];
    Loll CQG(93)gq [inequalities on traces of holonomies];
    Armand-Ugón et al PRD(94)ht/93 [loop variables];
    Frittelli et al PRD(94) [Faraday lines];
    Chechelashvili et al TMP(96)ht/95;
    Ganor & Sonnenschein IJMPA(96)ht/95;
    Haagensen ht/95,
    et al NPB(96)ht/95;
    Kijowski et al RPMP(87);
    Zapata JMP(97)gq [graphs];
    Faddeev & Niemi PRL(99)ht/98,
    PLB(99)ht/98,
    PLB(99)ht;
    Blaschke et al ht/00 [topological invariants for QCD];
    Orland PRD(04)ht;
    Ferreira & Luchini a1109 [and global properties];
    Wetterich a1710 [and flow equations].
  @ Fluxes: Dzhunushaliev et al PLB(00) [flux tubes];
    Freed et al AP(07)ht/06,
    CMP(07) [non-commutativity];
    > s.a. lattice gauge theory [flux and charge].
  @ Related topics: Brambilla & Prosperi ht/94-conf [and potentials];
    Watson PLB(94) [identities];
    Gukov & Witten a0804 [surface operators];
    Schroer FP(11)-a1012 [alternative setting, stringlike approach];
    Ferreira & Luchini NPB(12) [integral formulation, in loop spaces];
    Chung & Lu PRD(16)-a1609 [basis tensor fields];
    Meneses a1904 [holonomy approach, overview];
    > s.a. knots in physics;
      Nicolai Map.
  > Online resources:
    see Wikipedia page [loop representation in gauge theories and quantum gravity].
Features, Techniques
  > s.a. constrained systems [including reduction];
  fiber bundles; gauge choices.
  * Configuration space: The
    natural one is the moduli space of all gauge equivalence classes of connections
    on a principal G-bundle over the spatial manifold Σ (superspace)
    or connections over all such principal bundles over Σ (grand superspace);
    > see connections.
  * Alice configurations:
    Fields in theories with disconnected groups such that the disconnectedness
    has physical effects; > s.a. monopoles.
  @ With boundaries:
    Śniatycki et al CMP(96);
    Avramidi & Esposito CMP(99)ht/97,
    gq/99-conf;
    Ferrara & Frønsdal PLB(98)ht;
    Díaz-Marín Sigma(15)-a1407 [n-dimensional abelian gauge fields, general-boundary formulation];
    Geiller NPB(17)-a1703 [edge modes and corner ambiguities];
    Gomes et al NPB(19)-a1808,
    a1902 [unified geometric framework for boundary charges];
    Corichi & Vukašinac a2001 [Maxwell + Pontryagin, canonical];
    > s.a. quantum gauge theories.
  @ Measure: Pickrell JGP(96);
    Fleischhack mp/01,
    mp/01;
    > s.a. connection.
  @ Perturbations: 
    Mišković & Pons JPA(06)ht/05 [dynamics and symmetries];
    Chiaffrino et al a2012 [in terms of gauge invariants, at all orders].
  @ Related topics:
    Gomis et al PRP(95) [antibrackets];
    Loll et al JGP(96) [complexification];
    Lenz et al AP(00)ht [residual symmetries];
    McInnes JPA(98) [Alice configurations];
    Stoilov ht/05 [Lagrange multipliers];
    Feng et al JHEP(07)ht [counting gauge invariants];
    Kubyshin 89 [dimensional reduction];
    Anderson CQG(08)-a0711 [new interpretation of variational principle];
    Pommaret JModP(14)-a1310-talk [formal theory of systems of partial differential equations and Lie pseudogroups];
    Berger et al a1806 [complete set of invariant tensors];
    Balachandran & Reyes-Lega a1807 [role of the Gauss law];
    Giddings JHEP(19)-a1907 [asymptotic boundary conditions].
  > Features, effects:
    see Gribov Effect; instantons;
    monopoles; phase transitions;
    Reference Frames [accelerated]; solutions.
  > Techniques, tools: see
    homology [chain complexes]; manifold types [gauge orbit
    stratification]; Moduli Space; Seiberg-Witten Theory.
Types of Theories and Related Concepts
  > s.a. types of gauge theories.
  * Applications: They
    are very useful (especially the non-Abelian ones) in mathematics, to
    get insights on 4D differential topology; In condensed-matter physics,
    gauge fields provide the only means of describing the long-range
    interactions of vortices or defects in terms of local fields, rendering
    them accessible to standard field theoretic techniques.
  @ References: Kleinert 89 [in condensed-matter physics];
    García del Moral a1107 [new gauging mechanism];
    Pivovarov PPN(13)-a1209-conf [inaction approach];
    Margalli & Vergara PLA(15)-a1507 [hidden gauge symmetry in complex holomorphic systems];
    Deser PLB(19)-a1901
      [no-go result on non-Lagrangian gauge fields];
    Gording a2005 [new approach to particle content].
  > Theories: see
    lattice gauge theory; non-commutative
    gauge theories; yang-mills theories [including hamiltonian formulation].
  > Related concepts:
    see BRST transformations; charge;
    energy-momentum tensor; noether symmetries;
    particle models.
Other References > s.a. physics teaching.
  @ General:
    Moriyasu 83 [primer];
    Robinson et al a0810-ln [algebraic];
    in Scheck 12;
    Hamilton a1512-ln [intro, for mathematicians].
  @ Conceptual: Healey 07;
    Roberts et al a2105 [Noether-based argument].
  @ Geometric picture, approaches:
    Lubkin AP(63);
    Hermann 70, 78;
    Trautman RPMP(70),
    CzJP(79);
    Wu & Yang PRD(75);
    Atiyah 79;
    Daniel & Viallet RMP(80);
    Eguchi et al PRP(80);
    Balachandran et al 83,
    update a1702;
    Svetlichny ht/99-ln;
    Aldrovandi & Barbosa IJTP(00)mp/01 [non-bundle structure],
    IJTP(00)mp/01 [as optical medium];
    Ferrantelli MSc(02)-a1002 [gauge-natural formulation, including suypersymmetries];
    Harikumar et al PLB(03)ht/02 [topology];
    Kubyshin mp/03-conf;
    Robinson et al a0908-ln;
    Alsid & Serna FP(15)-a1308,
    Jordan et al a1404-ch [approaches];
    Zharinov TMP(14) [algebraic and geometric methods];
    Mielke 17;
    > s.a. 2-spinors.
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 25 may 2021