|  BRST Transformations and Quantization | 
Background
  * Idea: In the quantization
    of gauge theories using the Faddeev-Popov procedure, Becchi, Rouet, Stora
    and Tyutin realized that the effective action, including ghost and gauge-fixing
    terms, although not gauge-invariant in the regular sense, was invariant under
    a group of gauge-like transformations; This is now considered to be the
    simplest quantization method for non-Abelian theories.
Classical Structure
  * BRST extended phase space:
    Add one pair (η, π) of Grassmann-valued (ghost)
    variables for each constraint C of the theory.
  * BRST charge: The expression
    Q:= Ca
    ηa
    + Cabc
    ηb
    ηa
    πc
    + Cabcde
    ηc
    ηb
    ηa
    πe
    πd
    + ..., where the Cas are the constraints,
    and the other Cs the (first-order, second-order, ...) are structure functions.
  * BRST transformations:
    The canonical transformations on the extended phase space generated by Q;
    For any function F of (q, p, η, π),
δF = {Q, F} .
* Observables: An observable is a function F with ghost number zero which is (strongly) invariant under BRST transformations; If we consider the BRST δ as a coboundary operator, which gives a grading to the Fs by ghost number, then observables are the 0-th cohomology group of δ; Every observable in the usual sense as a function of (q, p) admits a BRST-invariant extension.
References
  > s.a. non-commutative geometry; symplectic
  structures [covariant]; types of cohomology.
  @ General: Becchi et al CMP(75),
    AP(76);
    Tyutin pr(75);
    Bonora & Tonin PLB(81);
    Kostant & Sternberg AP(87);
    Cheng & Tsai PRD(89);
    Henneaux CMP(91) [spacetime locality];
    Rivelles CQG(02) [new transformations];
    Becchi Pra(12)-a1107-talk [history];
    Krishna et al MPLA(11)-a1109 [dual-BRST symmetry];
    Ahmad CTP(13)-a1309 [general formalism].
  @ Intros / reviews: Henneaux PRP(85);
    Nemeschansky et al AP(88);
    Niemi PRP(89);
    Becchi ht/96-ln;
    Bes & Civitarese AJP(02)may [toy models].
  @ Geometric: Thierry-Mieg JMP(80);
    Quirós et al JMP(81);
    Bonora & Cotta-Ramusino CMP(83);
    Kastler & Stora JGP(86),
    JGP(86);
    Loll CMP(88);
    Castellani CQG(90);
    Bonora & Malik JPA(10) [geometrical interpretation of the Curci-Ferrari conditions];
    Dragon & Brandt fs(12)-a1205 [and cohomology].
  @ Related topics:
    Moshin & Reshetnyak IJMPA(14)-a1405 [in the generalized Hamiltonian formalism].
And Physics, Other Concepts
  > s.a. lovelock gravity; noether's theorem.
  @ Classical mechanics: Gozzi PLB(88),
    et al PRD(89) [path-integral formulation];
    Henneaux & Teitelboim CMP(88);
    McMullan CMP(92);
    Marnelius MPLA(00)ht.
  @ BRST extensions of a Lie group:
    Henneaux NPB(88).
  @ Representations of BRST algebra:
    Horuzhy & Voronin CMP(89);
    Voronin & Khoruzhii TMP(92).
  @ Inner products: Düchting et al NPB(99)ht/98 [and the Gribov problem].
  @ Anti-BRST transformations:
    Curci & Ferrari NCA(76);
    Grigore a2011 [causal approach].
  @ Supersymmetric models: Brandt fs(12)-a1201;
    Buchbinder & Koutrolikos JHEP(15)-a1510 [higher-spin fields].
  @ Other systems:
    Barducci et al IJMPA(89) [spacetime symmetries];
    Okumura JMP(00) [spontaneously broken gauge theory];
    Gracia-Bondía in(10)-a0808-ln [massive boson fields].
  @ Related topics: Dubois-Violette et al CMP(86);
    Azizov & Khoruzhii TMP(89) [ghost number];
    Abud et al AP(90) [gauged];
    Lusanna JMP(90);
    Rybkin NPB(91);
    Batakis & Kehagias MPLA(93) [topological obstructions];
    Brandt CMP(97)ht/96 [and covariance];
    Picariello & Torrente-Lujan CPC(04)ht/03 [Mathematica package for symbolic computations];
    Lavrov et al JHEP(11)-a1108 [soft breaking of BRST symmetry is inconsistent].
BRST Quantization > s.a. quantization of 1st-class
  and 2nd-class systems; dirac method;
  lagrangian dynamics; particles; QED;
  bosonic strings.
  * Motivation: BRST invariance
    effectively implements gauge invariance  in the path-integral quantization
    of gauge theories without having to fix the gauge, and having to confront the
    related tricky issues.
  @ General references:
    Fradkin & Vilkovisky PLB(75);
    Batalin & Vilkovisky PLB(77);
    Batalin  & Fradkin AIHP(88);
    Batalin et al NPB(89);
    Hwang & Marnelius NPB(89);
    Duval et al AP(91);
    Loll pr(91);
    van Holten LNP(05)ht/02;
    Fuster et al IJGMP(05)ht;
    Constantinescu & Ionescu AIP(09)-a1112.
  @ Hamiltonian and Lagrangian approaches:
    Grigoryan et al NPB(92);
    Nirov & Razumov JMP(93);
    Barnich & Grigoriev CMP(05) [for gauge theories];
    Gao LMP(06) [new construction];
    Constantinescu & Ionescu IJMPA(06) [equivalence];
    Kaparulin et al JGP(13)-a1207
      [general mechanical systems, link between path-integral quantization and deformation quantization];
    Moshin & Reshetnyak PLB(14)-a1406 [Lagrangian].
  @ Batalin-Vilkovisky and deformations:
    Stasheff qa/97-proc.
  @ On inner product spaces:
    Batalin & Marnelius NPB(95)ht  [gauge theories];
    Marnelius & Sandström IJMPA(00)ht/98.
  @ For superfields:
    Aoyama et al PLB(89) [4D superparticle];
    Batalin et al NPB(98)ht/97.
  @ With curved phase space:
    Batalin & Fradkin NPB(89);
    Batalin et al NPB(90).
  @ Related topics:
    Slavnov PLB(89) [unitarity];
    Thomi JMP(88);
    Dayi MPLA(89),
    IJMPA(96) [odd-time BV];
    Bizdadea & Saliu NPB(95) [second-class constraints];
    Scholtz & Shabanov AP(98) [Gribov problem];
    Lyakhovich & Sharapov JHEP(05)ht/04 [without Hamiltonian and Lagrangian];
    Fulp FP(07)m.DG/06 [and geometric quantization].
Specific Systems > s.a. quantum gauge theories
  and path integrals for gauge theories.
  @ Particle: Thomi JMP(89);
    in Nemeschansky et al AP(88);
    Batlle et al PRD(89);
    Marnelius NPB(94).
  @ Gauge theory:
    in Nemeschansky et al AP(88) [Maxwell];
    Hull et al NPB(91) [Yang-Mills];
    Marnelius NPB(93);
    Bizdadea JPA(96),
    & Saliu PLB(98)ht/99,
    EPL(98)ht/99 [p-forms];
    Ferraro & Sforza PRD(97)ht/96,
    PRD(01)gq [generally covariant];
    Moss & Silva PRD(97)gq/96 [boundary conditions];
    Federbush ht/99 [Yang-Mills theory];
    Bizdadea et al CQG(98)ht/99 [spin-5/2];
    Barnich et al PRP(00) [local BRST cohomology];
    Rivelles PLB(03) [higher-derivative, and quantum gravity];
    Rai & Mandal MPLA(11)-a1003 [abelian 2-form theory];
    Bratchikov a1203 [reducible gauge theories];
    Wrochna & Zahn RVMP(17)-a1407
      [on curved spacetime, classical phase space and Hadamard states];
    Shestakova a1410-conf [and gravity];
    Batalin & Lavrov PLB(15)-a1507 [intrinsic "BRST" operator];
    Acharyya et al PRD(16)-a1604 [in manifolds with spatial boundary];
    Öttinger PRD(18)-a1803 [Hamiltonian approach on Fock space];
    > s.a. renormalization.
  @ Gauge theory, field-dependent transformations:
    Lavrov & Lechtenfeld PLB(13) [Yang-Mills theory];
    Upadhyay PhD-a1308.
  @ Gravity / cosmology: Hájíček JMP(86);
    Louko CQG(87);
    Ashtekar et al PRD(87);
    Labastida & Pernici PLB(88) [topological gravity];
    Barnich et al NPB(95)ht [Einstein-Yang-Mills theory];
    Blaga et al PRD(95);
    Federbush ht/99 [quantum gravity model];
    Hamada ht/00;
    Bashkirov & Sardanashvily ht/04 [for spacetime transformations];
    Castellana & Montani CQG(08)-a0710,
    IJMPA(08) [and physical states, vs lqg];
    Upadhyay AP(14) [perturbative quantum gravity, and gaugeon formalism];
    Upadhyay & Paul EPJC(16)-a1506 [minisuperspace models];
    Upadhyay et al BJP(17)-a1510 [unimodular gravity];
    > s.a. 3D quantum gravity; cosmological perturbations;
      Metric-Affine Gravity; non-commutative gravity.
  @ Other field theories:
    Folacci PRD(92)-a0911 [massless scalar field, minimally-coupled, in de Sitter space];
    Noltingk JMP(02) [histories electromagnetism];
    Soroush PRD(03)ht [non-commutative gauge theory];
    Buchbinder et al MPLA(09) [bosonic antisymmetric tensor fields];
    Hasiewicz & Walczyk RPMP(11) [high-spin systems with anomalies];
    Anastasiou et al PRL(18)-a1807 [gravity/two-form/dilaton system];
    > s.a. high-spin fields; sigma-models;
      topological field theories.
  @ Other quantum systems:
    van Nieuwenhuizen ht/04-proc [quantum-mechanical model];
    López & Rogers a1208 [systems with secondary constraints].
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 20 nov 2020