|  Renormalization Group | 
In General
  > s.a. renormalization / for applications, see specific
  types of theories and quantum gravity.
  * History: The
    technique was developed in 1973 by Ken Wilson.
  * Idea: A group of
    transformations on the (renormalized) parameters of a theory (mass,
    wave function, coupling constants) corresponding to changes of the
    renormalization conditions (subtraction point), under which the
    physics is required to be invariant.
  * Applications: The
    invariance requirement provides non-trivial constraints on the asymptotic
    behavior of the theory; Renormalization group ideas are largely
    responsible for the considerable success achieved in developing a
    quantitative theory of phase transitions.
  > Applications: see
    Disordered Systems; phase transitions;
    random walk; statistics.
Renormalization Group Equation
  > s.a. chaos [period-doubling bifurcation].
  * Idea: It expresses
    the connection between scale transformations and renormalizability
    of a theory; Like a mathematical microscope, it allows us to look
    at very-small-scale physics from the behavior at larger scales.
  * Callan-Symanzik equation:
    An analytic form of the renormalization group invariance; For
    λφ4 theory, it is
(μ ∂/∂μ + β ∂/∂λ − nγ) ΓR(n)(pi; λ, μ) = −i μ2 α Γφ^2 R(n)(0, pi; λ, μ) .
  * Beta function: (or Gell-Mann-Low function).
  @ General references:
    Callan PRD(70);
    Symanzik CMP(70);
    Curtright & Zachos PRD(11)-a1010 [global structure of group trajectories].
  @ Geometric view:
    Dolan IJMPA(95),
    IJMPA(95),
    IJMPA(97);
    Jackson et al a1312
      [for holographic theories].
  @ Functional renormalization group: Polonyi CEJP(03)ht/01-ln;
    Pawlowski AP(07)ht/05;
    Weyrauch JPA(06) [and tunneling];
    Benedetti et al JHEP(11)-a1012;
    Vacca & Zambelli PRD(11)-a1103 [regularization and coarse-graining in phase space];
    Metzner et al RMP(12) [and correlated fermion systems];
    Nagy AP(14)-a1211-ln [intro, and asymptotic safety];
    Codello et al PRD(14)-a1310 [scheme dependence and universality];
    Mati PRD(15)-a1501 [Vanishing Beta Function curves];
    Codello et al PRD(15)-a1502 [and local renormalization group],
    EPJC(16)-a1505 [and effective action];
    de Alwis JHEP(18)-a1707 [and quantum gravity].
  @ Related topics: Simionato IJMPA(00)ht/98,
    IJMPA(00)ht/98,
    IJMPA(00) [and gauge symmetry];
    Gosselin et al PLA(99)qp/00,
    Gosselin & Mohrbach JPA(00)qp/98 [1-particle quantum mechanics, finite T];
    Litim & Pawlowski PRD(02) [perturbative expansion];
    Baume et al JHEP(14)-a1401 [Callan-Symanzik equation];
    Harst & Reuter AP(15)-a1410 [new, simpler to use functional flow equation].
References
  > s.a. Emergence; higgs mechanism;
  types of metrics [information geometry].
  @ Textbooks, reviews: Coleman in(71);
    Wilson & Kogut PRP(74);
    Wallace & Zia RPP(78);
    in Cheng & Li 84;
    Shirkov IJMPA(88),
    IJMPB(98)ht/97;
    Binney et al 92;
    Goldenfeld 93;
    Benfatto & Gallavotti 95;
    Intriligator hp/98-proc;
    Mironov & Morozov PLB(00);
    O'Connor & Stephens ed-PRP(01);
    Rivero ht/02-ln;
    Amit & Martín-Mayor 05;
    Mitter mp/05-en [mathematical];
    Sonoda ht/06-ln [and perturbation theory];
    Hollowood a0909-ln [and quantum field theory and supersymmetry];
    Meurice et al PTRS(11)-a1102 [new applications];
    Dimock RVMP(13)-a1108,
    JMP(13)-a1212,
    AHP(14)-a1304 [Balaban's approach];
    Sfondrini a1210-ln [and universality];
    Hollowood 13;
    Bauerschmidt et al a1907-book.
  @ Simple:
    Maris & Kadanoff AJP(78)jun;
    Wilson SA(79)aug;
    Hans AJP(83)aug.
  @ History:
    Stückelberg & Peterman HPA(53) [discovery];
    Shirkov & Kovalev PRP(01)mp/00-proc;
    Peskin JSP(14)-a1405 [Ken Wilson and strong interactions].
  @ Critical phenomena:
    Fisher RMP(74);
    Wilson RMP(75),
    RMP(83);
    Barber PRP(77) [intro];
    Schmidhuber AJP(97)nov-ht;
    Bhattacharjee cm/00-ln;
    Pelissetto & Vicari PRP(02);
    Requardt mp/02 [many-body systems];
    Singh a1402
      [and mean-field theory phase transitions, pedagogical];
    Giuliani et al JHEP-a2008 [introduction and fermionic example];
    > s.a. critical phenomena; phase transitions.
  @ Non-perturbative: Phillips et al AP(98);
    Aoki et al PTP(02)qp;
    Berges et al PRP(02) [and statistical mechanics];
    Blaizot et al PLB(06)ht/05 [solution],
    PRE(06)ht/05,
    PRE(05) [and p-dependence of n-point functions];
    Delamotte cm/07 [intro];
    Canet & Chaté JPA(07) [Model A, critical dynamics];
    Pinson CMP(08);
    Dupuis & Sengupta EPJB(08)-a0807 [for lattice models];
    Balog et al a1907
      [convergence of non-perturbative approximations];
    Dupuis et al a2006 [rev];
    > s.a. N-point functions.
  @ Holographic: Balasubramanian & Kraus PRL(99) [and AdS];
    Álvarez & Gómez PLB(00)ht;
    de Boer FdP(01)ht-in;
    Erdmenger PRD(01)ht;
    Bianchi et al NPB(02)ht/01;
    Skenderis CQG(02)ht-ln;
    Fukuma et al PTP(03)ht/02 [rev];
    Heemskerk & Polchinski JHEP(11)-a1010 [and Wilsonian RG];
    Park & Mann JHEP(12) [asymptotically flat gravity].
  @ UV fixed points: Gies & Janssen PRD(10)-a1006 [3D Thirring model];
    Eichhorn et al EPJC(16)-a1510 [in multi-field models];
    > s.a.  asymptotic safety in quantum gravity.
  @ IR fixed points: Ryttov & Shrock PRD(12)-a1206 [scheme transformations in the vicinity of an infrared fixed point];
    > s.a. quantum-gravity renormalization.
  @ Fixed points, other: Alexandre a0711 [misleading, free fixed point];
    Berges & Wallisch PRD(17)-a1607 [non-thermal fixed points];
    Jepsen & Popov a2105 [fixed points and homoclinic flows].
  @ Without fixed points: Glazek & Wilson PRL(02)ht [limit cycles and chaos];
    Rosten JHEP(09)-a0808 [from exact renormalization group];
    Bulycheva & Gorsky a1402-fs [limit cycles].
  @ Exact renormalization group: Sonoda JPA(07)ht/06 [vs ordinary];
    Rosten PRP(12)-a1003 [fundamentals];
    Baldazzi et al a2105 [practical computations].
  @ And information theory: Apenko PhyA(12) [information loss and irreversibility of RG flow];
    Bény & Osborne PRA(15)-a1206 [information-geometry approach];
    Li LMP(17)-a1604 [irreversibility of the renormalization group flow and entropy];
    DeBrota a1609.
  @ And conformal symmetry: Komargodski & Schwimmer JHEP(11)-a1107 [4D renormalization group flows and spontaneously broken conformal symmetry];
    Komargodski JHEP(12)-a1112;
    Rosten a1806
      [generalization to curved space, motivated by the conformal anomaly];
    Giuliani a2012-talk [intro].
  @ Related topics:
    Wilson AiM(75);
    Lässig NPB(90);
    Minic & Nair IJMPA(96) [wave functionals and eigenvalues];
    Jona-Lasinio PRP(01) [and probability theory];
    Requardt cm/01 [scaling limit];
    Dütsch & Fredenhagen ht/05-proc [in terms of algebraic quantum field theory];
    RG2005 JPA(06);
    Chishtie et al IJMPE(07)ht/06 [improvement];
    Streets JGP(09) [singularity formation];
    Yin CMP(11)-a0911 [spectral properties at infinite temperature];
    Yin JMP(11)-a0911 [cluster-expansion approach];
    Gaberdiel & Hohenegger JHEP(10) [supersymmetric flows];
    Dütsch CM(12)-a1012-in
      [connection between the Stückelberg-Petermann and Wilson renormalization groups];
    Bény & Osborne NJP(15)-a1402 [and effectively indistinguishable microscopic theories];
    Dias et al PLB(14)-a1407 [renormalization-group improved effective potential];
    Altaisky PRD(16)-a1604 [and wavelets];
    Bal et al PRL(17)-a1703 [using tensor networks];
    Herren & Thomsen a2104 [ambiguities and divergences];
    Yukalov PPN-a2105 [and approximation theory];
    > s.a. diffusion.
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 26 may 2021