|  Quantization of Second-Class Constrained Systems | 
In General
  > s.a. BRST quantization; types of constrained systems.
  * Dirac prescription: To quantize, impose the constraints strongly.
  @ References: Grundling & Hurst CMP(88);
    Egoryan & Manvelyan TMP(93);
    Nakamura & Minowa JMP(93);
    Klauder & Shabanov NPB(98)ht/97;
    Bratchikov LMP(02) [quantization of Dirac brackets];
    Nuramatov & Prokhorov IJGMP(06)qp/05 [reduction to first-class];
    Stoilov a1304 [Hilbert-space dimension].
Specific Types of Systems > s.a. Rotor.
  @ Particle on a sphere: Kleinert & Shabanov PLA(97);
    Hong et al MPLA(00).
  @ Motion on general submanifolds: Golovnev IJGMP(06)qp/05 [Dirac prescription];
    Golovnev RPMP(09)-a0812-conf [canonical quantization];
    Liu JMP(13)-a1305 [particle constrained on a curved hypersurface];
    de Oliveira JMP(14)-a1310 [particle constrained on a compact surface];
    Xun & Liu AP(14) [Dirac quantization].
  @ Time-dependent: Gadjiev & Jafarov JPA(07)ht/06.
Approaches
  @ Covariant: Lyakhovich & Marnelius IJMPA(01)ht.
  @ BRST approach:
    Batalin & Fradkin NPB(87);
    Niemi PLB(88);
    Batalin et al TMP(01)ht,
    PLB(02)ht/01 [generalized, first + second-class].
  @ Path-integral approach:
    Senjanović AP(76);
    Batalin & Marnelius MPLA(01)ht [Lagrangian, as gauge theory];
    Chesterman ht/02.
  @ Hamilton-Jacobi approach:
    Hong et al qp/01.
  @ Faddeev-Jackiw approach:
    Barcelos-Neto & Wotzasek IJMPA(92).
  @ Geometric quantization:
    Batalin & Lavrov TMP(16)-a1505.
  @ Deformation quantization: Batalin et al JMP(05)ht [general method].
  @ Other approaches: Amorim & Thibes JMP(99)ht [BFFT aproach];
    Nakamura a1108
      [star-product quantization, projection-operator method].
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 27 may 2019