|  Lattice Gauge Theories | 
In General > s.a. non-commutative
  field theory; quantum gauge theory.
  * History: First proposed
    by K Wilson in 1973 in order to explain quark confinement.
  * Idea: Given a matter
    field φ in an N-dimensional representation of
    a gauge group G, one assigns a φ(x) to
    to each lattice site and a U(x, x') in G
    to each (arbitrarily) oriented link; U corresponds to the holonomy exp(
    ie ∫xx'
    Aa dxa).
  * Action: The sum of a Wilson action
    Sg for U and a term
    Sm for the field φ
S:= βg ∑plaquettes Ep + βm ∑i,j φi Uij φj ,
where β:= 2N/g2; The energy for a plaquette (the smallest possible Wilson loop) along directions i, k is
EP:= 1 − (1/2N) tr (UP + UP†) → (g2/N) ∑l a4 (Fikl)2 (continuum limit) ,
    UP:= U1
    U2 U3
    U4, and l labels the Lie algebra generators.
  * Uses: Used to "show"
    confinement in non-abelian gauge theories, although there are difficulties coming
    from the fact that one encounters phase transitions going to the weak coupling
    limit (which corresponds to the continuum).
Specific Theories
  > s.a. graphs in physics [QED]; lattice QCD;
  QED and modified QED [Schwinger Model];
  yang-mills gauge theory [chaos].
  @ Electromagnetism, U(1):
    Aroca & Fort PLB(94),
    et al PLB(94) [Lagrangian loop formulation];
    Orthuber qp/03;
    He & Teixeira PLA(05) [polyhedral complex, degrees of freedom],
    PLA(06) [geometric, Galerkin duality];
    Di Bartolo et al MPLA(05) [Wilson loops];
    Giuliani et al AP(12) [honeycomb lattice gauge theory for graphene];
    Kaplan & Stryker a1806 [Hamiltonian formulation, Gauss' law and duality];
    Sulejmanpasic & Gattringer NPB(19)-a1901 [θ terms];
    > s.a. light [propagating on a lattice].
  @ SU(2): Bloch et al NPB(04) [propagators and coupling];
    Golterman & Shamir NPPS(05)hl/04 [chiral];
    Gutbrod NPB(05) [gauge singularities].
  @ SU(n): Bringoltz & Teper PLB(05)hl [bulk thermodynamic properties].
  @ Standard model:
    Preparata & Xue PLB(91) [electroweak];
    Creutz et al PLB(97);
    Zubkov PRD(10)-a1008 [electroweak, continuum limit].
  @ Supersymmetric:
    Bietenholz MPLA(99) [Wess-Zumino];
    Fujikawa NPB(02)ht [Leibniz rule];
    Kaplan NPPS(03)hl/02,
    et al JHEP(03)hl/02;
    Itoh et al JHEP(03);
    Feo MPLA(04);
    Catterall et al PRP(09)-a0903;
    Joseph a1409-conf [with matter fields];
    Catterall & Schaich JHEP(15)-a1505 [N = 4 supersymmetric Yang-Mills theory];
    Bergner & Catterall a1603-IJMPA [rev];
    > s.a. supersymmetric theories.
  @ Other theories: Wadia pr(79)-a1212 [3D U(N) lattice gauge theory];
    Bodwin PRD(96) [chiral gauge theories];
    Kawamoto et al NPB(00)ht/99 [BF];
    Larsson mp/02,
    Wise gq/05 [p-forms];
    Wiese AdP(13)-a1305 [and ultracold quantum gases];
    Wetterich NPB(13) [scalar lattice gauge theory];
    Lipstein & Reid-Edwards JHEP(14)-a1404 [2-form gauge field, lattice gerbe theory];
    Brower et al a1904 [beyond the standard model].
  > Other: see connection representation
    and loop quantum gravity.
References
  > s.a. lattice field theory; monopoles;
  topological defects; tensor networks;
  Wilson Loops.
  @ Intros / reviews:
    Hasenfratz & Hasenfratz ARNPS(85);
    Montvay & Münster 94;
    Sharpe hl/98-conf;
    Münster & Walzl hl/00-ln;
    Wilson NPPS(05)hl/04 [history];
    Oeckl 05;
    Rothe 12.
  @ Loop representation and states:
    Brügmann PRD(91);
    Aroca et al PRD(96)ht [path integral];
    Mathur PLB(06)hl/05,
    NPB(07).
  @ Quantum simulations: Zohar & Burrello PRD(15)-a1409;
    Bender et al NJP(18)-a1804;
    Lamm et al a1903;
    Bañuls et al a1911;
    Halimeh & Hauke a2001.
  @ Approches, formulations:
    Kogut & Susskind PRD(75) [Hamiltonian formulation];
    Loll NPB(92) [variables, constraints];
    Milton NPPS(97)hl/96 [alternative approach];
    Berges et al PRD(07)hl/06 [real time – Lorentzian];
    Vairinhos & de Forcrand JHEP(14)-a1409 [with link variables integrated out];
    Delcamp & Dittrich JHEP(18)-a1806 [3+1, dual spin network basis];
    Bañuls & Cichy a1910 [new methods];
    Haase et al a2006 [resource-efficient protocol].
  @ On quantum computers: Martinez et al nat(16)jun-a1605 [on a few-qubit quantum  computer];
    Brower et al PoS-a2002;
    Mathis et al a2005 [scalable].
  @ At finite T:
    Fodor & Katz PLB(02) [finite chemical potential];
    Meyer NPB(08) [sum rules].
  @ Continuum limit:
    Gross CMP(83) [3D U(1) theory];
    McIntosh & Hollenberg PLB(02);
    Thiemann CQG(01)ht/00.
  @ Simplicial lattice:
    Rajeev ht/04-conf [2+1 Yang-Mills];
    Christiansen & Halvorsen JMP(12)-a1006 [gauge-invariant discrete action].
  @ Random lattice:
    Christ et al NPB(82),
    NPB(82),
    NPB(82);
    Itzykson in(84),
    & Drouffe 89;
    Burda et al PRD(99)hl,
    NPPS(00)hl/99 [fermions].
  @ Other lattices: Chodos PRD(78) [dynamical structure];
    Andersen a1210 [Lorentz-covariant lattice graph].
  @ Duality: Oeckl & Pfeiffer NPB(01)ht/00 [and spin-foam models];
    Grosse & Schlesinger IJTP(01) [categorical methods];
    Mathur & Sreeraj PRD(16)-a1604 [SU(N) lattice theory and dual SU(N) spin model];
    Riello PRD(18)-a1706 [self-dual phase space].
  @ Symmetry-preserving coarse-graining schemes:
    Tagliacozzo & Vidal PRB(11)-a1007;
    Bahr et al NJP(11)-a1011 [and linearized gravity].
  @ Related topics:
    Boulatov CMP(97) [deformation];
    Ma MPLA(00) [gluon propagator];
    Burgio et al NPB(00) [\(\cal H\)phys];
    Caselle IJMPA(00) [and AdS-cft];
    Adams NPB(02)hl/01 [fermionic topological charge],
    NPB(02) [space of lattice fields];
    de Forcrand & Jahn NPB(03) [SO(3) vs SU(2)];
    Golterman & Shamir PRD(03)hl,
    NPPS(04)hl/03 [localization];
    Silva & Oliveira NPB(04) [Gribov copies];
    Stannigel et al PRL(14)-a1308
      [generating constrained dynamics via the Zeno effect using engineered classical noise];
    Vilela Mendes IJMPA(17)-a1711 [consistent measure];
    Knappe et al a1909 [observable algebra, stratified structure];
    > s.a. entanglement entropy;
    Tomboulis-Yaffe Inequality.
Generalizations
  > s.a. spin networks [gauge networks].
  * Tensor categories: The role of the gauge group
    is played by a tensor category, the admissible type (spherical, ribbon, symmetric) depending on
    the dimension of the underlying manifold (3, 4, any); Ordinary LGT is recovered if the category
    is the (symmetric) category of representations of a compact Lie group.
  @ Tensor categories: Oeckl JGP(03)ht/01.
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 28 jun 2020