|  Holonomy | 
In General > s.a. connection.
  * Idea: In a fiber bundle with
    a connection A, the change of an element in the fiber when transported
    along the lift \(\hat l\) of a closed curve l in the base space,
    l (1) = l (0)
    HA(l); It depends
    on the choice of lifting or gauge.
  * Properties: It allows
    to reconstruct A up to gauge; For the product of two loops,
    HA(l \(\circ\)
    m) = HA(l)
    HA(m).
  * For a trivial bundle: We can
    write a connection form Aa, and, if
    Fk = dAk −
    g Ckij
    Ai ∧ Aj,
HA(l) = P exp ∫l Aa(x) dxa = −(ig/\(\hbar\)c) ∫l Amk Tk dxm = 1 + (ig/2\(\hbar\)c) Fkmn Tk dσmn + h.o.t.
* In general relativity: Using the generators of the Poincaré group, it is
He,Γ = P exp{−(i/\(\hbar\)) ∫l (eam Pa + \(1\over2\)Γmab Mab) dxm } = 1 + (i/2\(\hbar\)) (Qamn Pa + \(1\over2\)Rabmn Mab) dσmn ,
    where Qa = dea
    + Γab
    ∧ eb is the torsion, and is observable for
    open l too [@ Anandan in(93)].
  @ And connections: Chi et al IM(96)dg/95;
    Díaz-Marín & Zapata JMP(10)-a1101 [holonomies and bundle structures];
    Rosenstock & Weatherall a1504
      [categorical equivalence between generalized holonomy maps and principal connections];
    Cekić & Lefeuvre a2105 [results on holonomy inverse problem].
  @ Of the Levi-Civita connection: Klitgaard et al CQG(20)-a2004 [3D and 4D relations with curvature integrals].
  @ Other special cases: Alfaro et al JPA(03) [non-abelian, triangular paths];
    Mendes mp/05 [U(1)].
  > Online resources:
    see MathWorld page;
    Wikipedia page.
Holonomy Groups and Algebras
  @ Holonomy groups:
    McInnes JMP(93) [classification, for Riemannian manifolds],
    JMP(93) [Einstein manifolds],
    JPA(97) [from curvature],
    CMP(99) [spin holonomy of Einstein manifolds];
    Hall & Lonie CQG(00)gq/03
      [and different Tmns];
    Boya RACZ(06)mp [intro for physicists].
  @ Holonomy algebras: Abbati & Manià JGP(02)mp [spectra];
    Okołów & Lewandowski CQG(03)gq,
    CQG(05) [representations];
    Aastrup & Grimstrup CMP(06)ht/05 [spectral triple from non-commutative algebra of loops];
    Lewandowski et al CMP(06)gq/05 [representations];
    Rios gq/05 [Jordan GNS];
    Gryc JMP(08) [manifolds with boundaries];
    Aastrup et al JNCG(09)-a0802,
    CMP(09)-a0807,
    CQG(09)-a0902-conf [and lqg],
    a0911 [emergent Dirac Hamiltonians];
    Dziendzikowski & Okołów CQG(10)-a0912 [diffeomorphism-invariant states];
    Aastrup & Grimstrup a1709 [representations],
      a1709 [quantum gravity and quantum Yang-Mills theory].
  @ Lorentzian: Galaev DG&A(05)m.DG/03 [D < 12, algebras];
    Hernandez et al JHEP(04)ht [and supersymmetry, various dimensions];
    Atkins BAusMS(06)mp [reducibility, and existence of metrics];
    Galaev IJGMP(06),
    JGP(10);
    Leistner JDG(07) [classification];
    Galaev LMP(15)-a1110,
    RMS(15)-a1611 [holonomy algebra of an arbitrary Lorentzian manifold];
    > s.a. tensor fields.
Variations, Generalizations > see Wilson Loop [on supermnaifolds].
  * Generalized holonomy:
    A homomorphism \(\cal L\)0 \(\mapsto\) G,
    where \(\cal L\)0 is the loop group of a manifold.
  @ General references: Kozameh & Newman PRD(85) [differential holonomies];
    Lewandowski et al JMP(93);
    Tavares JGP(98) [generalized];
    Mackaay & Picken AiM(02)m.DG/00 [abelian gerbes];
    Gubser ht/02-ln [special holonomy and strings];
    Lupercio & Uribe JGP(06) [gerbes over orbifolds].
  @ Higher holonomy invariants: Zucchini IJGMP(16)-a1505,
    IJGMP(16)-a1505 [in higher gauge theory].
And Physics > s.a. geometric phase;
  Wilson Loop [a basic variable in some formulations of gauge theory].
  * Quantum holonomy theory: A candidate
    for a fundamental theory based on gauge fields and non-commutative geometry.
  @ In quantum theory: Cheon & Tanaka EPL(09)-a0807,
    Tanaka & Cheon AP(09)-a0902 [unified formulation].
  @ Quantum holonomy theory:
    Aastrup & Grimstrup IJMPA(16)-a1404,
    FdP(16)-a1504,
    CQG(16)-a1602;
    Grimstrup CQG+(16);
    Aastrup & Grimstrup a1810 [fermionic sector];
    > s.a. canonical approaches to quantum gravity.
  @ And spacetime: Hall GRG(95);
    Bezerra & Letelier JMP(96) [conical singularities];
    Rothman et al CQG(01)gq/00 [Schwarzschild-Droste geometry];
    Carvalho & Furtado GRG(07) [FLRW metrics];
    Viennot JMP(10)-a1003 [non-abelian geometric phases and gauge theory of gravity].
  @ Holonomy of SU(2) spin connection: Jacobson & Romano CMP(93)gq/92
      [holonomy group classification and conservation].
  > Specific field theories: see gauge theory;
    loop gravity; quantum gravity in the connection representation
    [quantum holonomy theory].
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 14 may 2021