|  Perturbations in General Relativity | 
Linearized Einstein Equation > s.a. gauge
  transformations; hamilton-jacobi theory.
  * Idea: The problem of finding
    a field γab which
    describes a small departure from some gab
    (weak field if gab
    = ηab); Time-dependent
    perturbations can describe propagating gravitational waves and/or matter that
    are assumed not to affect the background spacetime.
  * Linearized metric perturbation:
    If gab(λ)
    is a one-parameter family of solutions, such that gab(0)
    = gab, define
γab := dgab(λ) / dλ|λ = 0 .
* Vacuum Einstein equation: The equation "linearized Rab = 0"; If γ:= γaa and Rabcd refers to the unperturbed metric gab,
∇m∇m γab + 2 Rambn γmn − 2 ∇(a∇|m| (γb)m − \(1\over2\)γ δb)m) = 0 , or ∇m∇m γab − 2 ∇m∇(a γb)m + ∇a∇bγ = 0 .
* Einstein equation with matter: For matter fields Φ (with perturbation φ) we write G (1)ab = 8πG T (1)ab, where the superscript (1) denotes a first-order perturbation; > s.a. metric perturbation.
Around Minkowski Space > s.a. duality;
  stress-energy pseudotensor; gauge transformations.
  * Idea: The weak-field approximation;
    It results in a wave equation that describes the propagation of gravitational waves,
    or the spin-2 graviton field, with matter stress-energy-momentum as source.
  * Wave equation: In terms
    of γ'ab:=
    γab −
    \(1\over2\)ηabγ,
    the linearized equation is −\(1\over2\)
    ∂c∂c
    γ'ab
    + ∂c∂(b
    γ'a) c
    − \(1\over2\)ηab
    ∂c∂d
    γ'cd
    = 8πG T (1)ab,
    which, with the right choice of gauge, ∂b
    γ'ab = 0, becomes the wave equation,
∂c∂c γ'ab = −16πG T (1)ab .
  * Recovering the non-linear theory:
    The full, covariant version of the theory can be derived by self-coupling from its
    linear, flat-spacetime version.
  @ General references: Weyl AJM(44);
    in Wentzel 49 [vacuum, graviton];
    Geroch notes on general relativity [short and clear];
    in Wald 84;
    Ichinose & Kaminaga PRD(89) [ambiguity];
    Jezierski CQG(02)gq/01;
    Calabrese et al CMP(03)gq/02 [boundary conditions];
    Bishop CQG(05)gq/04 [Bondi-Sachs form];
    Bernabéu et al PRD(10)-a0910 [with cosmological constant];
    > s.a. integrable systems.
  @ Hamiltonian form: Rosas-Rodríguez JPCS(05)gq;
    Ghalati ht/07 [constraint analysis];
    Green et al EPJC(11)-a0710;
    Contreras & Leal IJMPD(14)-a1304 [in Ashtekar variables].
  @ Special solutions: Tolish & Wald PRD(14)-a1401 [particle on a null geodesic, retarded solution];
    > s.a. gravitational waves; phenomenology of gravity.
Around Other Spacetimes > s.a. black-hole perturbations;
  collapse; cosmological perturbations
  [and structure formation]; metric matching.
  @ de Sitter spacetime: Losic & Unruh PRL(08)-a0804;
    Montaquila PhD(09)-a1004 [electromagnetic and gravitational waves];
    Bini et al GRG(12)-a1103 [and geodesic motion].
  @ Spherical:
    Moncrief AP(74),
    AP(74);
    Gerlach & Sengupta PRD(79),
    PRD(79);
    Karlovini CQG(02)gq/01 [axial];
    Nolan PRD(04)gq [gauge-invariant, interpretation];
    Brizuela et al PRD(06)gq,
    PRD(07)gq [second- and higher-order];
    Clarkson PRD(07)-a0708 [covariant];
    Brizuela & Martín-García CQG(09)-a0810;
    Chaverra et al PRD(13)-a1209 [self-gravitating spherically symmetric  configurations];
    Brizuela CQG(15)-a1505;
    > s.a. schwarzschild spacetime.
  @ Other spacetimes: Gasperini & Giovannini CQG(97)gq/96 [anisotropic];
    Konoplya PLA(00)gq/99 [any symmetry];
    Sarbach et al PRD(01)gq/00 [static, in terms of Kab];
    Dittrich & Tambornino CQG(07)gq [any symmetry-reduced];
    Mars et al PRD(08)-a0806 [Einstein-Straus swiss-cheese model matched to Oppenheimer-Snyder];
    Oota & Yasui IJMPA(10) [generalized Kerr-NUT-de Sitter spacetime];
    Pitrou et al CQG(13)-a1302 [homogeneous cosmologies, xPand algorithm];
    > s.a. kerr, Reissner-Nordström,
      Robinson-Trautman, Vaidya Spacetime.
  @ Higher dimensions: Petrov CQG(05)gq [conserved currents and Deser-Tekin charges];
    Durkee & Reall CQG(11)-a1009;
    > s.a. kaluza-klein models.
  @ Tails, Huygens principle: Waylen PRS(71) [relation to integral form of general relativity];
    Wünsch GRG(90) [and Cauchy problem].
  > Other:
    see bianchi I and other bianchi models;
    gravitational waves; kantowski-sachs;
    Lemaitre-Tolman-Bondi; FLRW models;
    petrov classes; phenomenology of inflation.
Linearization Stability > s.a. numerical
  general relativity and models;
  self-dual gravity.
  * Idea: Because general relativity
    is a non-linear theory, solutions to the linearized field equations yield spurious
    solutions (not tangent to any 1-parameter family of solutions) in the spatially
    compact case (due to fixed points of the action of the diffeomorphism group).
  * Integrability: A solution
    of the linearized Eistein equation is integrable iff the Taub conserved
    quantities vanish.
  @ General references: Moncrief JMP(75),
    JMP(76);
    Arms JMP(77) [Einstein-Maxwell],
    JMP(79) [Einstein-Yang-Mills theory];
    refs in Bao et al CMP(85), p342;
    Damour & Schmidt JMP(90);
    Bruna & Girbau JMP(99),
    JMP(99),
    JMP(05) [around FLRW spacetimes];
    Garecki a1406/APPB [using the canonical superenergy density];
    Saraykar a1612,
    Saraykar & Janardhan AJMCR-a1709 [as a generic property];
    Altas & Tekin a1903
      [Taub charge as integral constraint, from second-order perturbation theory].
  @ In other gravity theories:
    Altas a1808-PhD.
Gauge Dependence and Invariants > s.a. black-hole
  perturbations; FLRW models; gauge
  transformations; Taub Numbers.
  * Results: A perturbed
    quantity is gauge invariant only if the corresponding unperturbed quantity
    is zero, a constant scalar field, or a linear combination of products
    of δs with constant coefficients.
  @ Curvature-based: Anderson et al PRD(98)gq;
    Brodbeck et al PRL(00)gq/99 [with matter].
  @ General references: Novello et al PRD(95),
    PRD(95) [minimal set of observables];
    Anderson PRD(97)gq/96 [gravitational waves];
    Malik & Wands gq/98;
    Bel gq/06
      [special gauge transformations and superposition of solutions];
    Giesel et al CQG(10)-a0711,
    CQG(10)-a0711 [manifestly gauge-invariant];
    Nakamura a1103,
    a1112-proc,
    IJMPD(12)-a1203,
    a1209-MG13 [gauge-invariant, general background spacetime].
  @ Higher-order perturbations: Bruni et al CQG(97)gq/96,
    gq/96-proc;
    Sonego & Bruni CMP(98)gq/97 [gauge dependence];
    Bruni & Sonego CQG(99)gq [observables];
    Bruni et al CQG(03)gq/02,
    Nakamura PTP(03)gq [2-parameter];
    Clarkson PRD(04)ap/03 [covariant];
    Nakamura gq/04-proc [framework],
    PTP(05)gq/04,
    a0711-proc [second-order, gauge-invariant];
    Nakamura CQG(11)-a1011,
    a1012-proc,
    a1101 [gauge-invariant];
    Nakamura CQG(14)-a1403 [gauge-invariant variables for any order perturbations];
    > s.a. cosmological perturbations;
      minkowski space [stability].
Other References > s.a. cosmology [effects];
  einstein's equation [approximations]; linearized
  quantum gravity; scalar-tensor theories.
  @ General: Sachs in(64);
    in Misner et al 73, §18.1;
    Stewart & Walker PRS(74);
    Beig JPA(76);
    Gowdy JMP(78);
    in Wald 84;
    Geroch & Lindblom JMP(85);
    Gunnarsen CQG(89);
    Bekaert et al PRD(03)ht/02 [dual formulation];
    Sopuerta et al gq/02-conf [2-parameter];
    Speliotopoulos & Chiao PRD(04)gq/03 [and particles];
    Petrov MUPB(04)gq [conserved currents];
    Suvorov & Lun a1401;
    > s.a. tensor decompositions.
  @ Obtaining solutions: Wald PRL(78);
    Torres del Castillo GRG(90).
  @ Instabilities and constraints on perturbations:
    Traschen PRD(85);
    Tod GRG(88);
    Kastor & Traschen PRD(92);
    Deruelle et al CQG(97).
  @ Discretization: Gambini & Pullin; Di Bartolo et al JMP(05)gq/04 [consistent].
  @ Characteristic problem: Frittelli PRD(05)gq/04 [first-order reduction].
  @ Other formulations and theories: Jezierski GRG(95)gq/94 [metric vs spin-2 formulation];
    Baykal & Dereli a1612 [in terms of differential forms];
    Deser a1705 [bootstrapping the full covariant theories];
    Izaurieta et al EPJC(19)-a1901 [with torsion];
    > s.a. conformal gravity; higher-order
      theories; massive gravity.
  @ Related topics: Low CQG(99)gq/98 [speed of perturbations];
    Torres del Castillo  & Solís-Rodríguez JMP(99) [self-dual perturbations];
    Cartin gq/99 [Lanczos potential];
    Nieto MPLA(05) [linearized general relativity as gauge theory];
    Brizuela et al GRG(09)-a0807 [xPert computer algebra package];
    Anastopoulos PRD(09)-a0902 [backreaction].
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 26 jul 2019