|  Kerr Solutions | 
In General
  > s.a. black holes; solutions with
  symmetries; particles and fields [including geodesics].
  * Idea: A two-parameter family of
    solutions to Einstein's equation, representing (the only) stationary vacuum black-hole solutions.
  * Line element: In Boyer-Lindquist coordinates,
    with ρ2(r,θ):=
    r2
    + a2 cos2θ
    and Δ(r):= r2 − 2GMr
    + a2,
ds2 = ρ2 (dr2/Δ + dθ2) + (r2+a2) sin2θ dφ2− dt2 + (2GMr/ρ2) (a sin2θ dφ − dt)2 = ηab dxa dxb − λ la lb dxa dxb ,
    where λ = 2GMr3/(r
    4+a2z2),
    and la
    = (1, (rx+ay)/(a2+y2),
    (ry−ax)/(a2+y2),
    z/r) is null with respect to ηab;
    > s.a. Kerr-Schild Solutions.
  * Parameters: M represents the mass
    and Ma the angular momentum measured at infinity; Extremal solutions have a = GM.
  * Inequalities: The three parameters
    that characterize the Kerr black hole (M, a and horizon area) satisfy
    several important inequalities, some of which remain valid also for dynamical black holes;
    > s.a. black-hole geometry.
  @ General references: Kerr PRL(63);
    Kerr & Schild in(65),
    re GRG(09);
    O'Neill 95;
    Deser & Franklin AJP(07)mar-gq/06 [and time-independence, pedagogical];
    Visser in(09)-a0706 [introduction];
    Kerr in(09)-a0706,
    Dautcourt GRG(09)-a0807 [historical];
    Wiltshire et al ed-09;
    Teukolsky CQG(15)-a1410 [overview];
    Heinicke & Hehl IJMPD(15)-a1503 [intro].
  @ Derivations: Carter in(73)
      [nice, based on wave equation separability];
    Deser & Franklin GRG(10)-a1002 [pedagogical];
    Dadhich GRG(13)-a1301.
  > Generalizations: see
    black-hole perturbations; generalized kerr metrics;
    numerical models [collapse]; quantum black holes.
Coordinates and Geometry > s.a. Ergosphere;
  horizons; Hypersurfaces;
  petrov classification; Smarr Formula.
  * Singularities and horizons:
    They have a singularity at r = 0, horizons
    at r = r±, and
    an ergosurface at r = r0, where
r± = GM ± [(GM)2 − a2]1/2 , r0 = GM + [(GM)2 − a2 cos2θ]1/2 .
  * Killing tensor:
    The tensor Kab
    = Δ l(a
    l'b)
    + r2
    gab [@ Ludvigsen];
    > s.a. killing tensors [and Killing-Yano tensor].
  * Boyer-Lindquist coordinates:
    A coordinate system that allows to maximally extend the Kerr solution.
  * Light-like limit: The
    gravitational field relative to a distant observer moving at high speed
    rectilinearly in an arbitrary direction is an impulsive plane gravitational
    wave with a singular point on its wave front.
  @ Coordinates and extensions:
    Boyer & Lindquist JMP(67);
    Doran PRD(00)gq/99;
    Herberthson GRG(01) [extension at spi];
    Fletcher & Lun CQG(03),
    Bishop & Venter PRD(06) [generalized Bondi-Sachs];
    Hayward PRL(04)gq [Kruskal-like, dual null];
    Bini et al CQG(05)gq [static observers, Fermi coordinates];
    Natário GRG(09)-a0805 [generalized Painlevé-Gullstrand];
    Novello & Bittencourt G&C(11)-a1004 [Gaussian coordinate systems];
    García-Compeán & Manko PTEP(15)-a1205 [physically inconsistency of maximal analytic extensions];
    Dennison et al PRL(14)-a1409 [new family of analytical coordinate systems, trumpet slices];
    Liberati et al CQG(18)-a1803 [progress towards a Gordon form];
    Baines et al a2008 [unit-lapse form].
  @ Papapetrou gauge:
    Bergamini & Viaggiu CQG(04);
    Moreno & Núñez GRG(05).
  @ Light-cone structure:
    Pretorius & Israel CQG(98);
    Bai et al PRD(07)gq [near null infinity];
    Riazuelo a2008 [visual, ray tracing].
  @ Other geometric properties:
    Jerie et al CQG(99),
    comment Hall & Keane CQG(00) [symmetries];
    Marsh gq/07 [infinite-redshift surfaces];
    Jacobson & Soong CQG(09)-a0809 [ergosurface];
    Castro et al PRD(10)-a1004 [hidden conformal symmetry];
    Schinkel et al CQG(14)-a1310 [constant-mean-curvature slices];
    Gibbons & Volkov PRD(17)-a1705,
    comment Manko a1706 [zero-mass limit as a wormhole].
  @ Invariants, intrinsic characterization: Lake GRG(03)gq,
    GRG(04)gq/03;
    Ferrando & Sáez CQG(09)-a0812;
    Abdelqader & Lake PRD(15)-a1412 [horizon, M, a].
  @ Extreme case, geometry:
    Wang et al PRD(98);
    Åman et al CQG(12)-a1206 [Killing-vector behavior].
Physical Properties and Related Topics
  > s.a. black-hole thermodynamics [phase transitions]; energy.
  @ General references: Cohen JMP(68) [angular momentum];
    Berti et al PRL(16)-a1605 [testing the Kerr nature of a black hole with spectroscopy];
    > s.a. black-hole uniqueness and hair.
  @ Stability: Beyer CMP(01)ap/00;
    Dotti et al CQG(08)-a0805;
    Dotti et al CQG(12)-a1111,
    IJMPE(11)-a1111-proc;
    Lucietti & Reall PRD(12)-a1208 [extreme Kerr black hole];
    Myung PRD(13)-a1309 [in f(R) gravity];
    Gralla et al PRD(16)-a1608 [transient instability of near-extremal black holes];
    Finster & Smoller a1609-in [outline of proof];
    Finster a1811-ln;
    Andersson et al a1903;
    Giorgi et al a2002 [formalism for non-linear stability];
    > s.a. matter near black holes.
  @ Quantum corrections: Reuter & Tuiran PRD(11)-a1009;
    > s.a. schwarzschild space.
  @ Other topics:
    Ge & Leng PLA(94) [approximations];
    de Felice & Preti CQG(99) [separation constants];
    Mars CQG(99)gq [characterization];
    Loinger gq/99/NCB [?];
    Camargo & Socolovsky a1405 [Rindler approximation];
    Gralla et al PRD(16)-a1602 [magnetosphere];
    Hernández-Pastora & Herrera PRD(17)-a1701,
    Ravi & Banerjee NA(18)-a1705 [interior solution];
    > s.a. initial-value formulation; lanczos potential.
  > Phenomenology: see black-hole phenomenology
    [including Kerr hypothesis]; particles and fields in kerr spacetimes.
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 30 aug 2020