|  Bianchi Spacetime Models of Type I | 
In General
  > s.a. bianchi I models with matter and in other theories.
  $ Def: Defined by the structure constants
    CABC
    = 0 of the additive group \(\mathbb R\)3.
  * Types of solutions: In vacuum
    general relativity one gets the Kasner solution; With dust, one gets the
    Heckmann-Schücking solution.
  @ General references:
    Heckmann & Schücking in(62);
    Misner ApJ(68);
    Schön pr(91) [new variables];
    Bachmann & Schmidt PRD(00)gq/99 [quantum cosmology bifurcation];
    Tsamparlis & Apostolopoulos JMP(00)gq [symmetries];
    Khvedelidze & Mladenov PRD(02)gq [and 3-body Euler-Calogero-Sutherland model];
    Shabbir & Khan MPLA(10) [classification];
    Shabbir & Ali G&C(10) [proper projective collineations].
  @ Solution space: Hervik CQG(00)gq [vacuum and dust];
    Terzis & Christodoulakis CQG(12)-a1007 [entire solution space, Euclidean or Lorentzian].
  @ Related topics: Cropp & Visser CQG(11)-a1008 [as blown-up neighborhoods of a timelike geodesic in any metric].
  > Related geometrical topics:
    see Collineations; coordinate systems
    [geodesic lightcone coordinates].
  > Related physical topics:
    see cosmological models; gravitational
    thermodynamics; observables; Silent Universe.
Kasner Solution > s.a. wave equation.
  * Idea: Cosmological solution to the
    vacuum Einstein's equation for the Bianchi I case, in which some dimensions expand
    and some others contract in time (in 3+1 dimensions, one expands and two contract).
  * Vacuum solution: It is given by
    ds2 = −dt2
    + t2p1
    dx2 + t2p2
    dy2 + t2p3
    dz2, with ∑i
    pi = ∑i
    pi2 = 1;
    It can be parametrized by
p1 = −u (1+u+u2)−1 , p2 = (1+u) (1+u+u2)−1 , p3 = u (1+u) (1+u+u2)−1 .
  * With fluid: In general relativity
    with viscous fluid, it is not possible to obtain a model which satisfies the second
    law of thermodynamics and the dominant energy condition; This can be done in other
    theories, such as scalar-tensor gravity.
  @ General references: Kasner TAMS(24);
    Chodos & Detweiler PRD(80) [from Kaluza-Klein theory];
    Harvey PRD(83);
    Harvey GRG(90);
    Gentle CQG(13)-a1208 [in Regge calculus].
  @ Higher-dimensional:
    Krori & Barua PLA(87) [9+1-dimensional];
    Fabbri et al AACA(18)-a1812 [5D, with Dirac spinorss].
  @ Generalized: Belinskii & Khalatnikov JETP(70) [mixmaster-like];
    Gentle & Miller CQG(98)gq/97 [in Regge calculus];
    Maceda et al EPJC(04)ht/03 [non-commutative];
    Rasouli SPMS-a1405 [in Brans-Dicke theory];
    > s.a. non-commutative gravity.
  @ Related topics: Chicone et al PRD(11)-a1104 [cosmic jets in double-Kasner spacetimes];
    Kofman JCAP(11) [perturbations].
Related Phenomena
  > s.a. bel-robinson tensor; Boltzmann Equation;
  electromagnetism in curved spacetime; light.
  @ Isotropization: Fay CQG(01)gq/03 [scalar-tensor + massive scalar],
    CQG(02)gq/03 [scalar-tensor + scalar + fluid];
    Bronnikov et al G&C(02) [with spinor, vector and scalar fields];
    Fliche et al IJMPD(03);
    Fay & Luminet CQG(04)gq/03 [+ scalar];
    Fay GRG(05)gq [+ non-minimal scalar];
    Bronnikov et al IJTP(09) [+ electromagnetic + spinor field];
    Rybakov et al IJTP(11)-a1006 [scalar field with non-linear potential];
    Nungesser CQG(10) [collisionless matter, small anisotropy];
    > s.a. bianchi I in other theories [f(R) gravity];
      sources of gravitational radiation.
  @ Perturbations: Banach JMP(99),
    JMP(99);
    Song NCB(00) [null geodesics];
    Tsagas & Maartens CQG(00) [magnetized];
    Pereira et al JCAP(07)-a0707;
    Wilson & Dyer GRG(09) [planar];
    Di Gioia & Montani EPJC(19)-a1807 [with a uniform magnetic field];
    Agulló et al PRD(20)-a2003 [Hamiltonian theory],
    a2006 [computational algorithm];
    Boldrin & Małkiewicz a2105 [Hamiltonian formalism].
  @ Phenomenology: Schücker et al MNRAS(14)-a1405,
    a1601 [Hubble diagram of supernovae and anisotropy];
    > s.a. gravitational radiation.
Quantization > see bianchi I quantum cosmology; semiclassical general relativity.
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 13 may 2021