|  Gravitational Collapse | 
In General
  * Note: Unless otherwise specified,
    in this page gravitational theory is described by 4D general relativity.
  * Outcome: Collapse will in
    general lead to some singularity, either a black hole or a naked singularity,
    as indicated first by the Oppenheimer-Snyder solutions and later more generally
    (without symmetry assumptions) by the singularity theorems.
  * History: Einstein
    [@ AM(39)] did not believe that stars
    could collapse to singularities; After the early 1960s, work on gravitational
    collapse was divided into two branches, horizons and astronomical effects,
    and nature of singularities.
  * Time scale: Collapsed objects
    should settle to their equilibrium configuration in a time of the order of the
    light crossing time (and dependent on the spin of the perturbation).
   Quantum aspects:
    see models in canonical quantum gravity;
    spacetime geometry in quantum gravity.
 Quantum aspects:
    see models in canonical quantum gravity;
    spacetime geometry in quantum gravity.
Spherical Collapse Solutions
  > s.a. models in canonical general relativity; numerical
  models; types of singularities; Vaidya Metric.
  * Oppenheimer-Snyder:
    A family of solutions, representing the collapse of a uniform-density dust cloud (star with zero pressure);
    > s.a. PRF(04).
  @ General references: Christodoulou CPAM(91) [theory];
    Dwivedi & Joshi CMP(94) [with matter];
    Wagh ap/02 [and accretion, in exact general relativity];
    Joshi & Goswami PRD(04)gq/02  [initial data];
    Wagh et al gq/02;
    Lasky & Lun gq/06-MGXI,
    PRD(07)gq/06  [general fluids];
    Sharif & Iqbal MPLA(09)-a0812;
    Terno a1903 [self-consistent description];
    Erdem & Demirkaya a2007 [with dust, metric].
  @ Oppenheimer-Snyder:
    Oppenheimer & Snyder PR(39);
    Misner et al 73, 851–856;
    Ilha & Lemos PRD(97) [even dimensions];
    Casadio PRD(98)gq [Hamiltonian];
    Mitra FPL(00)ap/99 [??];
    Marshall a0907 [criticism, no black hole];
    Bengtsson et al PRD(13)-a1306 [trapped surfaces];
    > s.a. perturbations in general relativity.
  @ Scalar field:
    Burko & Ori PRD(97) [massless, numerical];
    Ziprick & Kunstatter PRD(09)-a0812 [massless, Painlevé-Gullstrand numerical];
    Ganguly & Banerjee Pra-a1210;
    Kommemi CMP(13) [charged, global structure of spacetime];
    Torres & Alcubierre GRG(14)-a1407 [charged];
    Guo & Joshi PRD(15)-a1507 [interior dynamics near the singularity];
    Saffer et al a2010 [quantum scalar field];
    s.a. semiclassical below.
  @ Scalar field + cosmological constant: Husain et al CQG(03)gq/02 [spherical, massless].
  @ Dust, cosmological background: Markovic & Shapiro PRD(00)gq/99 [homogeneous];
    Lake PRD(00)gq [inhomogeneous];
    Deshingkar et al PRD(01)gq/00;
    Cai & Wang PRD(06) [dark energy];
    Bhattacharya et al a1709 [naked singularities].
  @ Other fluid: Husain PRD(96)gq/95;
    Dadhich et al IJMPA(05) [higher-dimensional];
    Gonçalves & Villas da Rocha IJMPD(08) [dark energy, with kinematic self-similarity];
    Andréasson et al QAM-a0812 [Einstein-Vlasov];
    Sharif & Abbas MPLA(09)-a0905 [with electromagnetic field and cosmological constant];
    > s.a. Chaplygin Gas.
Types of Matter and Outcomes of Collapse > s.a. critical
  collapse; Hoop Conjecture; wormholes
  \ astronomical objects; gravitating bodies.
  * Carter-Israel conjecture:
    The end-state of the gravitational collapse of matter is a Kerr-Newman black hole.
  @ Black holes: Christodoulou CMP(87);
    Hod & Piran GRG(98)gq/99 [charged scalar, development of singularity and interior];
    Hall & Hsu PRL(90);
    Loinger ap/00/NCB [against!];
    Giambò et al CQG(02),
    Andréasson et al AM(11)-a0706 [spherical, sufficient condition];
    Bambi et al a0908-proc [alternatives to Carter-Israel conjecture];
    > s.a. black-hole formation and phenomenology.
  @ Singularities: Harada et al PRD(00)gq,
    PRD(00)gq [explosive radiation];
    Ghosh & Dadhich PRD(01)gq [higher-dimensional Vaidya];
    Giambò et al CQG(03),
    CQG(03);
    Goswami et al PRD(04)gq [spherical];
    Joshi et al IJMPD(12)-a1107 [genericity of black holes and naked singularities];
    Bambi et al PRD(13)-a1305 [singularity avoidance with quantum-gravity motivated effective density];
    Bambi et al PLB(14)-a1402 [singularity avoidance from four-fermion interaction];
    Chakrabarti a1709-PhD;
    > s.a. censorship.
  @ Matter shells:
    Kuchař CzJP(68) [charged shell];
    Gibbons CQG(97)ht [and isoperimetric inequality];
    Cho et al ht/00 [magnetic shell].
  @ Radiation: Ruffini & Vitagliano IJMPD(03)ap/02 [energy production];
    Calogeracos PLA(04)gq [spherical, spectrum];
    Ruffini et al IJMPD(05)gq/04 [electromagnetic radiation].
  @ Fluid: Goswami & Joshi CQG(04)gq [barotropic perfect fluid];
    Herrera et al IJMPD(09)-a0804 [viscous, dissipative];
    Ziaie et al EPJC-a1305 [Weyssenhoff fluid, strong curvature naked singularities];
    Herrera et al PRD(14)-a1404 [anisotropic dissipative fluid, axisymmetric].
  @ Other matter: Gibbons & Steif PLB(93)gq [fermion production];
    Jhingan & Magli PRD(00)gq/99 [particle clusters];
    Sorkin & Piran PRD(01)gq/00 [charged pair creation];
    Adler AJP(05)dec-gq [simple light and pfluid models];
    Germani & Tsagas PRD(06) [magnetized Tolman-Bondi];
    Lasky & Lun EAS(08)-a0711 [plasma];
    > s.a. canonical general relativity models [shells].
References > s.a. numerical models.
  @ General: Bergmann PRL(64);
    Chiu PT(64)may [radio galaxies];
    Harrison et al 65;
    Misner in(69);
    Penrose RNC(69);
    Christodoulou PhD(71),
    CMP(84);
    Price PRD(72),
    PRD(72) [perturbations];
    Boulware PRD(73);
    Penrose in(78);
    Wald JMP(79);
    Schoen & Yau CMP(83);
    Ori & Piran PRL(87);
    Nakamura et al PTPS(87);
    Christodoulou in(91);
    Eardley JMP(95) [vacuum];
    Joshi gq/97-in,
    Pra(00)gq-in [rev],
    gq/04-in;
    Joshi 08;
    Herrera AIP-a0909;
    Malafarina Univ(17)-a1703 [rev].
  @ Entropy of collapsing matter:
    Amarzguioui & Grøn PRD(05)gq/04;
    Greenwood JCAP(09)-a0811 [time evolution];
    > s.a. entropy bounds.
  @ Of inhomogeneities / fluctuations: Carr AJ(75);
    Herrera et al PLA(98)gq/97.
  @ Cylindrical:
    Lemos PRD(98) [& toroidal];
    Herrera & Santos CQG(05)gq [and gravitational waves];
    Ganguly & Banerjee GRG(11)-a1105 [& planar and toroidal].
  @ With cosmological constant: Ghosh PRD(00)gq/01 [null fluid, naked singularities];
    Madhav et al PRD(05)gq [non-zero tangential p];
    Garfinkle et al JHEP(12)-a1110 [massless scalar field, thermalization].
  @ With cosmological constant, 2+1: Chan et al IJMPD(06)gq/05 [+ massless scalar];
    Gutti CQG(05)gq [+ dust];
    Mann et al PRD(09)-a0812 [rotating shell].
  @ In higher dimensions:
    Debnath & Chakraborty MPLA(03),
    GRG(04),
    et al GRG(04),
    et al GRG(08);
    Yoo et al PRD(05)gq [5D, hoop conjecture, including numerical];
    Sarwe & Saraykar gq/05;
    Goswami & Joshi PRD(07)gq/06 [any D, spherical];
    Maier & Soares a0906 [D-branes];
    Ghosh & Jhingan PRD(10)-a1004 [5D Einstein-Gauss-Bonnet, quasispherical];
    Constantineau & Edery PRD(11)-a1103 [numerical, 4D and 5D, thermodynamics];
    Taves et al CQG(12)-a1110 [D-dimensional Einstein-Gauss-Bonnet, Hamiltonian formulation].
  @ Semiclassical: Barceló et al PRD(08)-a0712 [fate, questioning black-hole formation];
    Ziprick & Kunstatter PRD(10)-a1004;
    Tippett & Husain PRD(11)-a1106 [scalar field interior, null fluid exterior];
    Balakrishna et al FASS(16)-a1501 [dust sphere];
    Benítez et al PRL-a2002 [in lqg];
    Guenther et al a2010 [massless quantum scalar field];
    > s.a. black holes.
  @ Related topics: Misner PR(65) [spherical, with escaping neutrinos];
    Hod PRL(00) [rotating, radiative tail];
    Joshi et al gq/03 [shear, outcome];
    Vachaspati & Stojković PLB(08)gq/07 [and radiation];
    Herrera & Barreto IJMPD(11)-a1010 [in comoving coordinates, post-quasistatic approximation];
    > s.a. Gravastar.
  > Related topics:  see AdS-cft;
    branes; Chandrasekhar Limit;
    minkowski space [stability]; Phantom Fluid [3D];
    regge calculus; sources of gravitational radiation.
  > In other theories:
    see asymptotically-safe gravity; bimetric gravity;
    Gauss-Bonnet Gravity; higher-order gravity;
    hořava-gravity phenomenology; Horndeski Theory;
    lovelock gravity; modified lorentz symmetry
    [Einstein-aether theory]; MOND; Relativistic Theory of Gravitation;
    scalar-tensor theories.
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 31 oct 2020