|  Perturbations and Fields on Schwarzschild and Related Metrics | 
Perturbations in General > s.a. black-hole perturbations;
  higher-dimensional black holes; numerical relativity;
  spherical solutions.
  * Types: Perturbations
    with l = 0 or 1 correspond to charges, those with l
    = 2 to gravitational waves; The only stationary axial ones have l
    = 1; In addition to the quasinormal modes, the gravitational spectrum also has
    a continuum part, i.e., a branch cut in Green's function, on the negative imaginary
    frequency axis; Even perturbations satisfy the Zerilli equation, odd ones the
    Regge-Wheeler equation.
  * Price's Law: Linear
    perturbations of a Schwarzschild black hole, depending on initial conditions,
    fall off as t −2l−3
    or t −2l−2 for
    t → ∞, where l is the angular momentum.
  @ Linear:
    Regge & Wheeler PR(57) [odd parity];
    Peters PR(66);
    Edelstein & Vishveshwara PRD(70);
    Gerlach & Sengupta PRD(79),
    PRD(79) [covariant];
    Malec & O'Murchadha gq/97 [back-scattering],
    et al CQG(98)gq/97 [spherical scalar waves];
    Barack PRD(99) [scalar, late-time];
    Karkowski et al APPB(01)gq/02 [gravitational and electromagnetic];
    Vacaru IJMPD(03)gq/02 [black ellipsoids];
    Grumiller gq/03-MGX [classical, quantum, semi];
    Blue & Soffer JMP(05)gq/03 [odd, spin-2];
    Bishop CQG(05)gq/04 [Bondi-Sachs form];
    Leung et al CQG(03)gq [continuum, quadrupole];
    Fiziev JPCS(07)gq [exact solutions];
    Berndtson PhD(07)-a0903 [harmonic gauge];
    Donninger et al AiM(11)-a0908 [fall-off rate, Price's law];
    Zenginoğlu CQG(10)-a0911 [asymptotics].
  @ Gauge-invariant: Fernandes & Lun JMP(96);
    Jezierski GRG(99)gq/98 [waves];
    Sarbach & Tiglio PRD(01)gq [horizon-penetrating];
    Clarkson & Barrett CQG(03)gq/02 [covariant];
    Martel & Poisson PRD(05)gq [and radiation];
    Nagar & Rezzolla CQG(05)gq [rev];
    Shah et al a1611.
  @ Second-order: Gleiser et al PRL(96),
    CQG(96)gq/95,
    PRP(00)gq/98 [gravitational radiation from collision];
    Garat & Price PRD(00) [gauge-invariant];
    Nicasio et al GRG(00)gq [with odd parity];
    Brizuela et al PRD(09)-a0903 [gauge-invariant].
  @ Specific physical situations: Hopper & Evans PRD(10)-a1006 [produced by a small mass in an eccentric orbit].
  @ Related topics: Cruciani NCB(05)gq/06 [re Zerilli approach];
    Fiziev gq/06
      [solutions of the Regge-Wheeler equation in interior];
    Kol PRD(08)ht/06 [negative mode];
    Preston & Poisson PRD(06)gq [light-cone gauge];
    Andersson et al a1708 [integrated local energy decay estimate];
    Prabhu & Wald CQG(18)-a1807 [canonical energy and Hertz potentials].
  @ In modified theories: Yunes & Sopuerta PRD(08)-a0712 [Chern-Simons-modified gravity];
    Tattersall et al PRD(18)-a1711 [covariant formulation];
    > s.a. black holes in modified theories.
Quasinormal Modes > s.a. black-hole perturbations;
  black-hole thermodynamics; quantum black holes;
  schwarzschild-de sitter spacetimes.
  * Results: The imaginary parts of the frequencies of the quasinormal
    modes of the Schwarzschild black hole are equally spaced, with the level spacing dependent only on the surface gravity.
  @ General references: Regge & Wheeler PR(57);
    Liu & Mashhoon CQG(96);
    Décanini et al PRD(03)gq/02 [complex angular momentum];
    Motl ATMP(02)gq [and lqg];
    Motl & Neitzke ATMP(03)ht [asymptotic frequencies];
    Musiri  & Siopsis CQG(03)ht [perturbative];
    Padmanabhan CQG(04)gq/03 [level spacing];
    Sánchez et al EPJC(11)-a1006 [supersymmetric];
    Cho et al CQG(10) [asymptotic iteration method];
    Dolan & Ottewill PRD(11)-a1106 [and wave propagation];
    Rosa & Dolan PRD(12) [massive vector fields];
    Casals & Ottewill PRL(12).
  @ Second-order: Kao PRD(07)-a0704;
    Nakano & Ioka PRD(07)-a0708.
  @ Higher-dimensional: Birmingham PLB(03)ht;
    Cardoso et al PRD(04)gq/03 [D ≥ 4],
    JHEP(03)ht [D = 5];
    Rostworowski APPB(07)gq/06.
  @ Dirac fields: Musiri & Siopsis PLB(07)ht/06 [massless];
    Chen et al CQG(06) [and Lorentz violation].
  @ Arbitrary spin: Shu & Shen PLB(05)gq;
    Khriplovich & Ruban IJMPD(06)gq/05.
Fields, Waves and Related Effects > s.a. black-hole phenomenology;
  black-hole hair; horizons; Penrose
  Inequality; quantum black holes.
  * Wave propagation:
    Governed by the spin-dependent wave equation
    
  @ Scalar fields: Zecca NCB(03);
    Kuchiev & Flambaum PRD(04) [absorption cross-section];
    Kronthaler JMP(06)gq [Cauchy problem];
    Tsoupros GRG(10) [massless, conformal];
    Dolan & Ottewill PRD(11)-a1106 [retarded Green function and quasinormal modes];
    Kanai & Nambu CQG(13) [scattering and black-hole imaging];
    Li et al a1612 [bound and scattering states];
    > s.a. scattering.
  @ Massive vector fields: Zecca NCB(05);
    Rosa & Dolan PRD(12)-a1110 [quasinormal modes and bound states].
  @ Electromagnetic waves / Maxwell fields: Zecca NCB(00);
    Malec PRD(00)gq;
    Karkowski et al CQG(02)gq/01,
    APPB(01)gq/02,
    PRD(03)gq/02 [and gravitational waves, including numerical results];
    Čadež & Kostić PRD(05)gq/04 [optics];
    Valiente Kroon PRS(07)gq [near spi];
    Crispino et al PRD(07) [absorption];
    Mason & Nicolas JGP(12) [and Dirac fields, peeling];
    Andersson et al CQG(16)-a1501 [decay of solutions];
    Nambu & Noda CQG(16)-a1502 [wave optics];
    Johnson a1907
      [link between spin-1 and spin-2 equations on Schwarzschild spacetime].
  @ Other fields:
    Aguirregabiria & Vishveshwara PLA(96);
    Sánchez ht/01-proc;
    Raffaelli JHEP(13)-a1301 [scattering of spin-j fields];
    > s.a. electromagnetism in curved spacetime; klein-gordon
      fields; low-spin field theories [3/2].
  @ Stability: Vishveshwara PRD(70);
    Ishibashi & Kodama PTP(03)ht [higher-dimensional];
    Gibbons et al PTP(05)ht/04 [M < 0 stable];
    Gleiser & Dotti CQG(06)gq,
    Cardoso & Cavaglià PRD(06)gq [M < 0 unstable];
    Finster & Smoller ATMP(09)gq/06 [electromagnetism and gravity];
    Brito et al PRD(13)-a1304 [massive spin-2 fields, and bounds on graviton mass];
    Dotti PRL(14)-a1307;
    Dafermos et al a1601 [gravitational perturbations];
    Hung et al a1702;
    Johnson a1810-PhD.
  @ Tails, late-time behavior: Ching et al PRL(95)gq/94,
    PRD(95)gq;
    Barack PRD(99)gq/98;
    Friedman & Morris JMP(00);
    Koyama & Tomimatsu PRD(01) [massive scalar];
    Cardoso et al PRD(03)ht;
    Karkowski et al CQG(04)gq/03;
    Price & Burko PRD(04)gq [special case];
    Luk AHP(10)-a0906;
    > s.a. gauge-theory solutions.
  @ Other effects: Karkowski et al APPB(03)gq/02 [ringing];
    > s.a. chaotic motion; doppler shift.
  > Other matter on Schwarzschild backgrounds:
    see dirac fields; gauge theory
    solutions; Gravitinos; other
    fields; particles.
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 25 jul 2019