|  Kantowski-Sachs Spacetimes | 
In General > s.a. spherical symmetry in general relativity.
  * Idea: Homogeneous cosmological
    models, in which the spatial isometry group acts multiply transitively.
  * Line element: The usual form is
ds2 = −dt2 + A(t) dr2 B(t) dΩ2 .
  * Remark: Used to describe the
    interior of a Schwarzschild black hole, for example re singularity resolution.
  * Properties: Spatial topology
    S2 × \(\mathbb R\), with possible discrete
    identifications; Spherically symmetric with an extra translation symmetry.
  @ Geometry: Shabbir & Mehmood MPLA(07)gq/06 [Weyl collineations];
    Heinzle PRD(11)-a1105 [constant-mean-curvature slicings];
    Shabbir & Iqbal a1110 [proper homothetic vector fields];
    Shabbir et al a1308 [proper conformal vector fields].
  @ Topology: Ellis GRG(71);
    Li & Hao PRD(03)ap [cannot be closed].
Special Cases
  > s.a. cosmological models [bounce].
  * Conformally flat:
    A Kantowski-Sachs spacetime is conformally flat iff A(t)
    = B(t) cos t; Then, and only then, it admits progressing
    waves.
  * Robinson-Bertotti solution:
    An electrovac solution of Einstein's equation, which is the direct product
    of a 2-sphere of radius (Q2
    + P2)1/2
    with a pseudosphere of the same radius; It has a six-parameter maximal symmetry group.
  @ Robinson-Bertotti solution:
    Bertotti PR(59);
    Robinson BAPS(59);
    in Carter in(73);
    Silva-Ortigoza GRG(01),
    Sakalli GRG(03) [solution of Dirac equation];
    Mazharimousavi et al GRG(10)-a0802 [generalized to Einstein-Yang-Mills-dilaton];
    Garfinkle & Glass CQG(11)-a1109 [and Melvin spacetimes];
    Ottewill & Taylor PRD(12)-a1209 [quantum theory of a massless scalar field];
    Halilsoy & Mazharimousavi PRD(13)-a1211 [and Melvin spacetimes];
    Clément CQG(14)-a1311 [in 5D quadratic gravity];
    > s.a. lovelock gravity; particle models.
Other References > s.a. non-commutative field theory.
  @ With a perfect fluid:
    Kantowski & Sachs JMP(66) [dust];
    Vajk & Eltgroth JMP(70);
    Collins JMP(77);
    Torrence & Couch GRG(88);
    Bombelli & Torrence CQG(90) [Ashtekar variables];
    Dabrowski JMP(95) [dust];
    Adhav et al IJTP(08) [+ massless scalar].
  @ With matter and radiation: Coley et al PRD(02)ap;
    Horváth & Kovács PADEU-gq/06-proc [canonical theory].
  @ With a scalar field: Sanyal PLB(02) [dynamical symmetries];
    Reddy et al IJTP(09).
  @ Einstein-Yang-Mills theory: Donets et al PRD(99) [N = 2 supersymmetry].
  @ Perturbations: Keresztes et al proc(14)-a1304,
    Bradley et al a1303-MG13,
    Keresztes et al JCAP(15)-a1507 [with a cosmological constant].
  @ In f(R) gravity:
    Shamir ASS(10)-a1006;
    Leon & Saridakis CQG(11)-a1007
      [f(R) = Rn gravity];
    Leon & Roque JCAP(14)-a1308.
  @ In f(T) gravity: Rodrigues et al ASS(15)-a1408 [and Bianchi I & III];
    Amir & Yussouf IJTP(15)-a1502.
  @ In other theories: Obregón & Preciado AIP(11)-a1305 [Hořava-Lifshitz gravity];
    > s.a. einstein-æther theories;
      non-commutative cosmology.
Quantum Theory
  > s.a. minisuperspace quantum cosmology; GUP phenomenology.
  @ General references: Louko & Vachaspati PLB(89);
    Chakraborty MPLA(91),
    & Chakravarty IJMPA(98);
    Uglum PRD(92);
    Mazzitelli PRD(92) [and spherical symmetry];
    Conradi CQG(95)gq/94;
    Simeone GRG(00)gq/01,
    GRG(02)gq;
    Shen & Zhang IJTP(00) [from sqrt of Wheeler-DeWitt equation];
    Cordero et al PRD(11)-a1102 [deformation quantization];
    Joe & Singh CQG(15)-a1407 [in lqc];
    Alvarenga et al a1506 [fluid, two approaches to time];
    Pal & Banerjee CQG*(15)-a1506 [unitary evolution].
  @ Lqg approach: Modesto IJTP(06)gq/04 [lqg/Bohr compactification],
    CQG(06)gq/05 [and black hole singularity];
    Chiou PRD(08) [with lqc corrections].
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 14 apr 2019