|  Gravitational-Wave Solutions of Einstein's Equation | 
Gravitational-Wave Solutions in General > s.a. gravitational
  radiation; solutions of einstein's equation.
  @ General references: Jordan et al AWL(60);
    Repchenkov JETP(79) [without convergence];
    Bini et al NCB(89) [wave packets];
    Chandrasekhar & Ferrari PRS(93) [spherical];
    Alì & Hunter JMP(99) [large-amplitude];
    Bičák in(02)gq [existence, examples];
    Hubeny & Rangamani JHEP(03)ht/02 [asymptotically plane wave];
    Bondi PRS(04) [z-independent standing waves];
    Keane & Tupper CQG(04)-a1308 [conformal symmetry classes];
    Hervik CQG(04) [solvegeometric];
    Edgar & Ramos GRG(07)gq/06 [type O, with cosmological constant].
  @ Axisymmetric:
    Kuchař PRD(71) [cylindrical];
    Herrera & Jiménez JMP(86);
    Kramer CQG(99).
  @ Other types: Bičák et al PRD(12)-a1207 [rotating, to second order in the amplitude];
    Swearngin a1302,
    Thompson et al JPA(14)-a1402 [linked and knotted solutions];
    Tucker & Walton CQG(17)
    + CQG+ [spatially compact pulsed gravitational waves, and astrophysical jets];
    Bini et al PRD(18)-a1801,
    Firouzjahi & Mashhoon a1904 [twisted].
  @ In cosmological backgrounds: Gowdy PRL(71) [closed universes];
    Caldwell PRD(93) [Green functions in FLRW spacetime];
    Bishop PRD(16)-a1512 [in de Sitter spacetime];
    > s.a. green functions.
  @ With matter and in other theories: Simon CQG(92) [Einstein-Maxwell theory].
Solutions with Vanishing Curvature Invariants > s.a. Brinkman's
; chaotic motion; killing tensors.
  $ pp-wave solutions:
    Metrics representing plane-fronted waves with parallel rays, in which
    all scalar curvature invariants vanish; They are of the form
ds2 = 2 du dv + 2 dζ dζ* + (f + f*) du2, with f = f(u, ζ), where ζ ∈ \(\mathbb C\) spans u = const ;
    Special cases are those in which f is linear in ζ,
    which gives Minkowski spacetime, and f = g(u)
    ζ2, which gives plane waves, see below.
  * Gyraton: A beam-pulse of
    spinning gravitational radiation, for which all scalar invariants constructed
    from the curvature and its covariant derivatives vanish.
  @ pp-wave solutions: Peres PRL(59)ht/02;
    in Kramer et al 80;
    Szabados CQG(96) [spacelike 2-surface geometry];
    Balakin et al G&CS(02)gq [precession];
    Hubeny & Rangamani JHEP(02)ht [causal structure];
    Coley et al PRD(03)gq/02 [higher-dimensional];
    Nutku CQG(05)gq [electrovac];
    Balasin & Aichelburg GRG(07)-a0705 [canonical formulation];
    Milson et al JMP(13)-a1209 [invariant classification];
    Hervik et al CQG(14)-a1311
      [universal metrics, which solve the vacuum equations of all gravitational theories with Lagrangian
      constructed from the metric, the Riemann tensor and its derivatives of arbitrary order].
  @ pp-waves, in other theories: Baykal TJP(16)-a1510 [in modified gravity, rev];
    > s.a. finsler geometry.
  @ Impulsive: Steinbauer gq/98-proc;
    Kunzinger & Steinbauer JMP(99)gq/98,
    CQG(99)gq/98 [distributional diffeomorphisms];
    Luk & Rodnianski a1209 [propagation].
  @ Gyraton: Frolov & Fursaev PRD(05) [arbitrary D];
    Frolov et al PRD(05)ht [arbitrary dimension];
    Frolov & Zelnikov CQG(06) [charged].
Plane Wave Solutions > s.a. null
  infinity; quasilocal general relativity.
  $ Of the full Einstein
    equation: Solutions of the vacuum Einstein equation homeomorphic
    4, of the form
ds2 = 2 du dv + dy2 + dz2 + H(y, z, u) du2 , H = (y2 − z2) f(u) − 2 yz g(u) ,
    with f(u) and g(u) arbitrary C2
    functions (representing amplitude and polarization of the waves).
  * Form of the metric: Strong-field
    gravitational plane waves are often represented in either the Rosen or Brinkmann forms.
  * Properties: They admit a
    5-parameter (or 6-parameter in some cases) group of isometries which acts
    transitively on u = constant surfaces; They satisfy the causality
    condition, but they do not admit global Cauchy surfaces; They have the same scalar
    invariants as flat space; To distinguish them, have to use the frame bundle.
  * Of the linearized equation:
    Perturbations of the form γab
    = Hab
    exp(i kmxm),
    with added gauge conditions.
  @ General references:
    Einstein & Rosen JFI(37);
    Bondi et al PRS(59);
    Penrose RMP(65),
    in(68);
    in Hawking & Ellis 73, 178-179;
    Cropp & Visser CQG(11)-a1004 [Rosen form, general polarization modes];
    Hinterleitner & Major PRD(11)-a1006 [in real connection variables].
  @ Geometry:
    Matzner & Tipler PRD(84) [curvature singularities];
    Neville PRD(97) [intrinsic spin];
    Torre GRG(06)gq/99 [symmetries];
    David JHEP(03) [with weak singularities];
    Shore JHEP(17)-a1705 [twisted null geodesic congruences].
  @ Electrovac: Montanari  & Calura AP(00);
    Hervik CQG(03)gq/02 [from 5D vacuum].
Bondi-Sachs Metric
  * Idea: Describes gravitational radiation from an
    isolated source, and is valid in the vicinity of \(\cal I\)+.
  * Line element: It is of the form
ds2 = W du2 − 2 exp{2β} du dr + r2 hij(dxi − U idu)(dxj − U jdu) ,
    where hij is a specific spacelike metric.
  @ References: in d'Inverno 92;
    in Shore CP(03)gq;
    Korbicz & Tafel CQG(04) [action and Hamiltonian];
    Mädler & Winicour a1609-en [formalism, rev].
Impulsive and Colliding-Wave Solutions
  > s.a. geodesics; Robinson-Trautman Spacetimes.
  * Bell-Szekeres:
    Electrovacuum solutions representing the collision of pure electromagnetic
    plane waves with collinear polarization.
  @ Impulsive: Aliev & Nutku CQG(01)gq/00 [spherical];
    LeFloch in(11)-a1009 [rev];
    van de Meent CQG(11)-a1106 [piecewise flat, impulsive plane wavefront];
    Sämann & Steinbauer CQG(12)-a1207 [completeness].
  @ Bell-Szekeres: Halil IJTP(81) [particle motion];
    Clarke & Hayward CQG(89);
    Dorca PRD(98)gq [\(\langle\)Tab\(\rangle\)];
    Gürses et al PRD(03) [higher-dimensions];
    Barrabès & Hogan CQG(06)gq [generalizations].
  @ Other colliding: Khan & Penrose Nat(71)jan;
    Chandrasekhar & Xanthopoulos PRS(86),
    PRS(87),
    PRS(88);
    Yurtsever PRD(88),
  PRD(89);
    Griffiths 91;
    Chakrabarti IJMPD(93);
    Barrabès et al PTP(99)gq/00;
    Gürses et al PRD(02)gq,
    Gutperle & Pioline JHEP(03)ht [higher dimensions];
    Barrabès & Hogan GRG(14) [collision of two homogeneous, plane, gravitational shock waves].
  @ Colliding, with matter:
    Hogan et al LMP(98)gq/97 [Einstein-Maxwell];
    Gurtug et al GRG(03)gq [Einstein-Maxwell + scalar];
    Gurtug & Halilsoy IJMPA(09)-a0802 [Einstein-Yang-Mills];
    > s.a. solutions with matter.
  > Related topics: see canonical quantum gravity;
    harmonic maps; higher-order gravity.
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 5 may 2019