|  Decomposition of Functions and Tensor Fields | 
Functions
  > Complete sets: see bessel functions;
  legendre polynomials; Special Functions [including
  Minkowski]; Visscher Basis; wave equations.
Vector Fields
  > s.a. vector calculus; vector fields.
  * On R\(^3\): Any vector
    field va can be decomposed into a
    gradient and a divergenceless part Ba
    (~ Hodge theorem),
va = Da f + Ba ;
    The decomposition is unique up to f ' = f + c
    (we assume that the metric is positive-definite).
  * On other manifolds: If
    π1(M) is non-trivial, there can be
    an additional harmonic field – this is related to the Aharonov-Bohm effect.
  * Hydrodynamic decomposition:
    Given a vector field va,
    its covariant derivative can be decomposed as
∇a vb = ωab + hab + va ab ,
    where ωab
    = ω[ab] is
    the rotation, hab
    = h(ab) the rate of
    deformation, and aa
    the acceleration.
  @ References:
    Presnov RPMP(08)
      [on a Riemannian manifold of non-positive curvature];
    Woodside AJP(09)may [3D Euclidean space and 4D Minkowski space];
    Tudoran AAM(19)-a1711;
    > s.a. MathWorld page on Helmholtz's Theorem.
Other Tensors
  > s.a. tensors; tensor fields.
  * 3D rank-2 symmetric, conformally
    invariant decomposition: Assume we have a (+,+,+) metric on a closed M;
    Then, under a certain condition for the existence of an appropriate vector field
    ω, we can write
ψab = ψ(ab) = ψtrab + ψttab + ψlongab ,
    where ψtrab
    = \(1\over3\)ψ gab,
    ψlongab
    = 2 ∇(a ωb)
    − (2/3) gab ∇c
    ω c;
    The transverse traceless part ψttab
    is defined as the rest.
  @ 3-metric: Berger & Ebin JDG(69); York JMP(73), AIHP(74).
  @ Metric perturbations: Buniy & Kephart PLB(09)-a0811 [scalar, vector, and tensor modes and applications].
  @ Other tensors: Fecko JMP(97)gq [forms, with respect to an observer field];
    Senovilla gq/00-proc [general tensor, electric/magnetic];
    Matagne AdP(08)gq/05 [electromagnetic tensor];
    Straumann AdP(97)-a0805 [on spaces with constant curvature];
    Auchmann & Kurz JPA(14)-a1411 [relativistic electrodynamics, observer space];
    De las Cuevas et al a1909 [invariant
      decompositions of elements of tensor product spaces, with indices arranged on a simplicial complex].
  > Online resources:
    see Wikipedia page.
Spacetime Metric
  > s.a. ADM formulation; canonical general relativity;
  Gauss-Codazzi Equations; gravitational energy-momentum.
  * 3+1:
    In ADM (spatial metric + lapse + shift) variables,
ds2 = −N 2 dt 2 + (N i dt + dx i) (N j dt + dx j) qij ; g00 = −N−2, g0i = N−2 N i, gij = qij − N−2 N i N j .
  * 2+2: General relativity is
    describable as a Yang-Mills theory defined on the (1+1)-dimensional base
    manifold, whose local gauge symmetry is the group of the diffeomorphisms
    of the two-dimensional fibre manifold.
  * Threading / Fermat geometry:
    The spatial part is fij:=
    N −2 qij;
    It can be defined without hypersurfaces, on the instantaneous 3-space of each
    observer; & Abramowicz; > s.a. canonical
    general relativity and modified forms;
    Optical Geometry.
  @ General references: York JMP(73),
    AIHP(74);
    D'Eath AP(76);
    Fischer & Marsden in(79);
    Choquet-Bruhat et al in(79);
    in Stewart CQG(90);
    Bini & Jantzen proc(01)gq/00 [refs];
    Delphenich gq/07 [in terms of tangent bundle structure].
  @ 3+1, conformal-traceless form: Brown PRD(05)gq;
    > s.a. canonical general relativity; initial-value
      problem; numerical general relativity.
  @ 2+2 form: d'Inverno & Stachel JMP(78);
    Brady et al CQG(96)gq/95;
    Yoon PLB(99)gq/00 [Kaluza-Klein-type];
    d'Inverno et al CQG(06)gq,
    CQG(06)gq [in terms of complex self-dual 2-forms];
    > s.a. quasilocal general relativity.
  @ More general forms: Mc Manus GRG(92) [m+n, generalised Gauss-Codazzi equations];
    Lau CQG(96)gq/95 [1+2+1 slicings];
    Gergely et al a2007 [2+1+1. Hamiltonian dynamics].
  @ Higher-dimensional, brane-world:
    Anderson PhD(04)gq [including brane world];
    Gergely & Kovács PRD(05)gq.
  @ Threading: van Elst & Ellis CQG(96)gq/95 [applications];
    van Elst & Uggla CQG(97)gq/96 [and slicing];
    Fecko JMP(97)gq;
    Harris & Low CQG(01)gq [shape of space];
    Larsson ht/01
      [quantum gravity, p-jets on world-line];
    Ahmadi et al JCAP(08) [application, quantum-gravity phenomenology];
    Bini et al PRD(12)-a1203 [admissible coordinates and causality].
  > Related topics:
    see foliations and types of spacetimes
    [decomposition into regions]; Space [as spacetime submanifold].
Related Topics > see matrices.
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 4 jul 2020