|  Higher-Order Theories of Gravity: Types and Examples | 
Variational Principles
  > s.a. actions for gravity [curvature-saturated];
  theories of gravity; torsion in physics.
  @ General references:
    Allemandi & Francaviglia IJGMP(07).
  @ Action / Lagrangian: Nojiri & Odintsov PRD(00)ht/99,
    Dyer & Hinterbichler PRD(09)-a0809 [surface terms];
    Krasnov PRD(10)-a0911 [with two propagating degrees of freedom, effective Lagrangians];
    Caravelli & Modesto PLB(11)-a1001 [from black-hole entropy];
    Biswas et al PRL(12)-a1110
      [the most general covariant ghost-free theories].
  @ Perturbation theory: Havas GRG(77) [linearized];
    Multamäki et al PRD(10)-a0910 [stability of solutions];
    Bueno & Cano PRD(16)-a1607 [simpler calculations].
  @ Boundary terms: Guarnizo et al GRG(10)-a1002;
    Fatibene et al a1106;
    Teimouri et al JHEP(16)-a1606;
    Sáez-Chillón a2011 [Palatini f(R) gravity];
    > s.a. Lanczos-Lovelock and scalar-tensor gravity below.
  @ Hamiltonian formulation: Szczyrba JMP(87);
    Ezawa et al CQG(99)gq/98;
    Querella PhD(98)gq/99;
    Ezawa et al CQG(06)gq/05;
    Deruelle et al PRD(09)-a0906,
    PTP(09)-a0908;
    Fatibene et al CQG(10)-a1003 [self-dual connection formulation, constraints];
    Sanyal et al CQG(12)-a1108;
    Mandal & Sanyal PRD(17)-a1709 [inequivalent canonical structures];
    Sanyal AP(19)-a1807 [ambiguity and the Dirac approach].
f(R) Theories > s.a. energy-momentum
  pseudotensor; entropic gravity; unimodular gravity.
  * Ostrogradski theorem:
    The only potentially stable, local modification of general relativity is
    to make the Lagrangian an arbitrary function of the Ricci scalar.
  * Field equations:
    (Extended gravity theories) If \(\cal L\) is a non-linear function of the
    curvature scalar, then the field equations are of fourth order in the metric;
    These equations were first discussed by H Weyl in 1918, as an alternative
    to Einstein's theory; Palatini f(R) theories are
    mathematically equivalent to Brans-Dicke theories, but not physically.
  * R−1
    theories: Motivated by the fact that they lead to cosmological acceleration;
    A 1/R action by itself is ruled out by constraints on scalar-tensor gravity,
    but could work as an extra contribution to the action.
  @ Reviews: Perez Bergliaffa a1107-proc;
    Capozziello & De Laurentis a1307-MG13;
    Sporea a1403 [intro].
  @ General references: Schmidt IJGMP(07)gq/06-ln [4th-order];
    Faraoni PLB(08)-a0806 [f(R) and conformal rescaling];
    Jaime et al PRD(11)-a1006 [with R as extra variable];
    Yang EPL(11)-a1103 [conformal transformations];
    Jorás IJMPA(11)-in [shortcomings];
    Paliathanasis et al PRD(11)-a1110 [constraints and solutions];
    Tamanini & Koivisto PRD(13)-a1308 [non-minimally coupled, consistency];
    Guendelman et al a1312-proc;
    de Haro EPL(14)-a1403 [holonomy corrections];
    Carloni JCAP(15)-a1505 [as dynamical system];
    Woodard a1506-en [Ostrogradski theorem];
    Capozziello et al a1512-MG14 [frame equivalence];
    Nayem & Sanyal IJMPD(18)-a1708 [different canonical forms];
    Li et al PRD(18)-a1711 [causality and a-theorem constraints];
    Chakraborty et al PRD(19)-a1812 [equivalence of Jordan and Einstein frames].
  @ Solutions: Chakraborty & SenGupta EPJC(16)-a1604 [technique for solving field equations];
    > s.a. phenomenology.
  @ And scalar-tensor gravity:
    Ezawa & Ohkuwa a1204-ch [and quantization];
    Fatibene & Francaviglia IJGMP(14)-a1302;
    Fatibene & Garruto IJGMP(14),
    Morais Graça & Bezerra MPLA(15)-a1312 [and Brans-Dicke theories];
    Langlois & Noui JCAP(16)-a1512 [Hamiltonian analysis];
    Fatibene & Garruto IJGMP(16)-a1601-conf;
    Nayem & Sanyal IJMPD(17)-a1609;
    Ruf & Steinwachs PRD(18)-a1711 [quantum equivalence];
    Castañeda & Velásquez a1808 [including boundary terms].
  @ And other theories:
    Granda a0812-in [from holographic principle];
    Saltas & Hindmarsh CQG(11)-a1002
      [equivalence of f(R) and Gauss-Bonnet theories];
    Fabbri & Vignolo AdP(12)-a1012 [with torsion and ELKO matter];
    Benachour a1202 [theories equivalent to general relativity];
    Santos & de Souza Santos AIP(12)-a1212 [and its bimetric structure].
  @ Hamiltonian formulation:
    Olmo & Sanchis-Alepuz PRD(11) [à la Brans-Dicke theory];
    Ohkuwa & Ezawa EPJP(15)-a1412 [using Lie derivatives];
    Bombacigno et al a1911 [connection variables].
  @ R2 theories:
    Folomeshkin CMP(71);
    Simon PRD(90) [non-locality];
    Meng & Wang CQG(05)
      [R2 + R−1];
    Zhogin a0812-GRF [problems];
    Edery & Nakayama PRD(19)-a1902 [Palatini formulation = Einstein gravity, no massless scalar].
  @ R2 theories, Hamiltonian:
    Sanyal GRG(05)ht/04;
    Klusoň et al PRD(14)-a1311;
    Debnath et al PRD(14)-a1408 [in higher dimensions].
  @ R−1 theories:
    Chiba PLB(03)ap [and scalar-tensor];
    Cline ap/03-wd [as extra term].
  @ Other forms: Meng & Wang PLB(04)ht/03 [ln R, Palatini];
    Baghram et al PRD(07)ap [\(f(R) = (R^2 − R_0^2)^{1/2}\)];
    Kruglov IJTP(13)-a1202 [\(f(R) = \{1 - (1-2\lambda R)^{1/2}\}/\lambda\), Born-Infeld-like];
    Kruglov IJMPA(13)-a1204 [f(R)
      = R eαR];
    Kruglov ASS(15)-a1502 [\(f(R) = (1/\beta) \arcsin(\beta R)\), and cosmology];
    Kumar a1611 [cosmologically viable].
  > Related topics: see Birkhoff's Theorem;
    geodesics [geodesic deviation]; metric matching;
    singularities [quantum fields as probes].
Other Theories
  > s.a. higher-order gravity [metric vs Palatini formulations]; scalar-tensor
  theories [Jordan vs Einstein frames]; spin-2 field theories.
  * Quadratic theories: Adding terms
    quadratic in the curvature to the action renders gravity renormalizable; The price
    to pay is the presence of a massive ghost.
  * Lanczos-Lovelock gravity: The most
    general theories of gravity in D dimensions which satisfy (a) the principle
    of equivalence, (b) the principle of general covariance, and (c) have field equations
    involving derivatives of the metric tensor only up to second order; The m-th
    order Lanczos-Lovelock Lagrangian is a polynomial of degree m in the curvature
    tensor; The field equations resulting from it become trivial in the critical dimension
    \(D = 2m\) and the action itself can be written as the integral of an exterior derivative
    of an expression involving the vierbeins.
  @ Matter couplings:
    Sotiriou in(08)gq/06;
    Sotiriou PLB(08)-a0805,
    Sotiriou & Faraoni CQG(08)-a0805 [with matter coupling to R];
    Harko PLB(08)-a0810,
    PRD(10) [f(R) theories];
    Fabbri & Vignolo CQG(11)-a1012
      [f(R) theories with torsion and Dirac fields];
    Haghani et al IJMPD(14)-a1405-GRF [with
  RabTab term].
  @ Lanczos-Lovelock gravity: Lanczos JMP(69);
    Madore CQG(86) [action];
    Yale & Padmanabhan GRG(11)-a1008;
    Deser & Franklin CQG(12)-a1110 [canonical analysis];
    Kunstatter et al CQG(12) [Hamiltonian for spherically symmetric Lovelock gravity];
    Padmanabhan & Kothawala PRP(13)-a1302 [rev];
    Chakraborty & Padmanabhan PRD(14)-a1408 [evolution as departure from holographic equipartition];
    Chakraborty et al GRG(17) [boundary terms in the action];
    > s.a. black-hole geometry; lovelock gravity;
      quasilocal energy; thermodynamics.
  @ Quadratic theories: Borowiec et al CQG(98)gq/96 [\(R_{ab}^{~} R^{ab}\) Lagrangians];
    Olmo et al PRD(09) [\(f(R, R^{mn}R_{mn}^{~})\)];
    Biswas et al CQG(14)-a1308 [quadratic, non-local but ghost-free and UV asymptotically free theories];
    Álvarez-Gaumé et al FdP(16)-a1505 [rev];
    Álvarez et al a1710-conf [and UV completion],
    EPJC(18)-a1802 [physical content];
    Salvio FrPh(18)-a1807 [rev];
    Morales & Santillán JCAP(19)-a1811 [Cauchy problem].
  @ Cubic theories: Caprasse et al IJMPD(93);
    Bueno & Cano PRD(16)-a1607 [Einsteinian cubic gravity];
    > s.a. lensing models.
  @ With curvature derivatives: Oliva & Ray PRD(10)-a1004 [six-derivative Lagrangians, classification];
    Naruko et al CQG(16)-a1512
      ["scalar-tensor" theories, with 2 scalar and 2 tensor degrees of freedom].
  @ Fourth-order gravity: Carloni et al GRG(09) [dynamical-systems approach];
    Avalos et al a2102,
    a2102 [energy, positive-energy theorem]. 
  @ Other theories: 
    Hindawi et al PRD(96) [vacua and excitations];
    Borowiec et al gq/00-conf [general Ricci-type gravitational Lagrangians];
    Navarro & Van Acoleyen JCAP(06)gq/05 [MOND-like, and cosmology];
    Gruzinov & Kleban CQG(07)ht/06 [causality constraints];
    Ishak & Moldenhauer JCAP(09)-a0808 [minimal set of invariants];
    Lü & Pope PRL(11)-a1101 ["critical gravity"];
    Atazadeh & Darabi GRG(14)-a1302 [f(R,G), energy conditions and viability];
    Colléaux & Zerbini Ent(15)-a1508 [with second-order equations of motion];
    Hao & Zhao PRD(17)-a1512 [Ricci polynomial];
    Karasu et al PRD(16)-a1602 [minimal extension of Einstein's gravity, quartic theory];
    Stachowiak PRD(17)-a1703
      [f(Rab), and cosmology];
    Bueno et al JHEP(19)-a1906 [generalized quasi-topological gravities];
    Amendola et al PLB(20)-a2006 [inverse of the Ricci tensor].
  @ Lower-dimensional:  Bergshoeff et al AP(10) [3D, and higher-spin gauge theories];
    Güllü et al PRD(10)-a1002 [canonical structure];
    Gürses et al PRD(12)-a1112 [3D f(Rab)
      theories, constant-scalar-curvature Type-N and Type-D solutions];
    Ohta CQG(12) [3D, classification of unitary and stable theories];
    > s.a. 2D gravity; 3D gravity.
  @ Higher-dimensional: Ezawa et al CQG(99) [semiclassical stability];
    Collins & Holdom JHEP(02) [4+1 with cosmological constant];
    Huang et al PRD(10) [and cosmological acceleration];
    > s.a. kaluza-klein theory.
Quantum-Gravity Motivated
  > s.a. higher-order theories of quantum gravity.
  @ General references: Bonanno et al CQG(11)-a1006
      [renormalization-group improved, inflationary solutions];
    Pereira-Dias et al PRD(11)-a1009
      [effect of Lorentz-symmetry violating Chern-Simons and Ricci-Cotton terms in the action];
    Dzhunushaliev IJMPD(12)-a1201
      [f(R) modified gravities from non-perturbative quantum effects].
  @ Infinite-derivative, string-inspired: Biswas & Talaganis MPLA(15)-a1412 [rev];
    Talaganis & Teimouri a1701 [Hamiltonian];
    Talaganis a1704 [towards UV finiteness];
    Gording & Schmidt-May JHEP(18)-a1807 [ghost-free];
    Edholm a1904-PhD [phenomenological predictions];
    Dimitrijevic et al proc(18)-a1902 [derivation of the equations of motion];
    > s.a. gravitating bodies;
      singularities [avoidance].
  @ From loop-quantum-gravity effective theory:
    Bojowald & Skirzewski IJGMP(07)ht/06-ln;
    Olmo & Singh JCAP(09)-a0806 [lqc].
  > Other: see brans-dicke theory;
    BRST symmetries; Conformal Gravity;
    Gauss-Bonnet Gravity [including f(G) theories];
    hořava-lifshitz gravity; lovelock gravity;
    Metric-Affine Theories; supergravity;
    unified theories [fourth-order Weyl].
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 5 feb 2021