|  Spherical Symmetry in General Relativity | 
In General > s.a. computational physics [scalar fields];
  spherical harmonics; spherically symmetric geometries
  \ types of spacetimes.
  @ References: Deser et al CQG(04)gq [re shortcut in metric Ansatz];
    Jacobson CQG(07)-a0707 [radial-area coordinate and line element];
    Abreu & Visser PRD(10)-a1004 [geometrically preferred coordinate system];
    Moopanar & Maharaj IJTP(10)-a1108 [conformal symmetry];
    Cordero-Carrión et al JMP(11)-a1111 [maximal slicings];
    Tupper et al CQG(12)-a1206 [complete classification in terms of local conformal symmetries];
    Parry AMP(14)-a1210 [survey];
    Kim et al a1604 [tetrad-based method].
  @ Static: Ali et al TMP(15)-a1309 [complete classification using Noether symmetries];
    Santa & Romano JCAP(18)-a1611 [cosmological  interpretation].
  @ Locally rotationally symmetric spacetimes: 
    Sharif & Amir BJP(10)-a1002;
    Amir & Sattar IJTP(14)-a1312 [vacuum solution in f(R) gravity];
    MacCallum a2104 [criteria].
  > Related topics: see Hypersurface
    [representations of deformation generators]; models in canonical gravity;
    perturbations; Trapped Surface.
In Vacuum General Relativity > s.a. Birkhoff's Theorem;
  gravitational collapse; foliations;
  thermodynamics; vacuum [polarization].
  * Vacuum solution: There
    is only one, and it is static, the Schwarzschild solution (> see
    Birkhoff's Theorem); This is because of
    the spin-2 nature of the gravitational field; Its source is a quadrupole
    changing in time.
  * Perturbations: Tensors such as
    metric perturbations can be decomposed using tensor spherical harmonics.
  @ General references: in Bergmann 42, ch13;
    in Synge 60;
    Bergmann et al JMP(65);
    Takeno 66;
    Thomi et al PRD(84);
    Clarke CQG(87);
    in Harriott & Williams IJTP(89);
    Siegl CQG(92);
    Kastrup & Thiemann NPB(94)gq [as integrable system];
    Braham PRD(95);
    Dadhich CS(00)gq [duality].
  @ Hamiltonian: Berger et al PRD(72);
    Lund PRD(73) [Schwarzschild];
    Unruh PRD(76);
    Hájíček PRD(84),
    PRD(84),
    PRD(84),
    PRD(85),
    PRD(85);
    Guven & Ó Murchadha PRD(95)gq/94,
    PRD(95)gq/94;
    Hayward PRD(96)gq/94 [energy];
    Lau CQG(96)gq/95.
  @ Related topics: Malec PRD(94) [horizons];
    Guven & Ó Murchadha PRD(97)gq,
    PRD(97)gq [apparent horizons];
    Abbassi JHEP(99) [+ cosmological constant];
    Nashed PRD(02)gq [non-singular black holes, teleparallel theory];
    Molina et al PRD(11)-a1107 [isotropic extensions].
  > Special solutions: see
    Penrose Inequality; black-hole solutions;
    schwarzschild spacetime; schwarzschild-de
    sitter space.
With Fluids
  > s.a. Lemaitre-Tolman-Bondi; types of singularities.
  * Solutions: McVittie;
    Oppenheimer-Snyder; Friedmann-Lemaître-Robertson-Walker.
  @ General references: Berger et al JMP(87) [static pfluids];
    Beig & Simon LMP(91) [uniqueness result];
    Sharif & Iqbal ChJP(02)gq/04 [non-static];
    Salgado PRD(02)gq [fluid + particles];
    Lake PRD(03)gq/02 [static, all];
    Giambò et al CMP(03)gq/02 [anisotropic elastic materials];
    Feroze et al NCB(03) [non-static];
    Heinzle CQG(03) [static];
    Das et al JMP(03)gq,
    Negi IJTP(06)gq/04 [interiors];
    Wiltshire CQG(06)gq;
    Herrera et al PRD(08)-a0712 [static, anisotropic];
    Tewari & Joshi Pant a1006 [static perfect fluid].
  @ With dust: Casadio PRD(98)gq [Hamiltonian];
    Humphreys et al GRG(12)-gq/98 [classification];
    Carr PRD(00)gq [self-similar];
    Gladush OAP-a1011 [charged dust, stable].
  @ Einstein-Vlasov: Andréasson & Rein CQG(07) [steady states].
  @ Self-similar: Carr et al PRD(00)gq/99,
    CQG(01)gq/99;
    Carr & Coley PRD(00)gq/99,
    CQG(00)gq;
    Wagh & Govinder GRG(06)gq/01,
    gq/01;
    Carr & Gundlach PRD(03)gq/02;
    Sharif & Aziz IJMPD(05);
    Harada et al PRD(08)-a0707,
    Maeda et al PRD(08)-a0707 [dark energy].
With Other Matter
  > s.a. gravitational collapse; dirac fields;
  numerical general relativity; solutions with matter.
  * With massless scalar,
    static: Janis-Newman-Winicour; Wyman; Fisher.
  * Results: If R
    s = GM / c2, there
    are no solutions with matter support R < R s;
    for R = R s + ε, the solution
    will be unstable; In the case of a perfect fluid, there are stable spherically symmetric solutions
    only for R > (9/8) R s.
  @ Einstein-scalar: Christodoulou CMP(96),
      CMP(86) [massless, initial-value];
    Kokubun MPLA(96);
    Malec JMP(97);
    Virbhadra IJMPA(97)gq [m = 0];
    Bronnikov PRD(01)gq [causal structure];
    Bilge & Daghan gq/05/GRG [partial decoupling];
    Abdolrahimi & Shoom PRD(10)-a0911 [massless, Fisher solution];
    Bhattacharya & Joshi MPLA(11)-a0912 [massless];
    Azreg-Aïnou GRG(10)-a0912 [self-interacting];
    Bronnikov et al EPJC(11)-a1109 [stability];
    Álvarez et al PRL(12)-a1111 [local Hamiltonian];
    Gambini & Pullin CQG(13)-a1207 [with local Hamiltonian, complete initial-boundary value problem].
  @ Einstein-scalar, with cosmological constant:
    Mehrpooya & Momeni IJMPA(10)-a0903;
    Costa et al AHP(13)-a1206 [characteristic initial data].
  @ Einstein-Yang-Mills: Oliynyk & Künzle JMP(02)gq/00 [boundary-value problem],
    CQG(02)gq [global behavior],
    CQG(03);
    Linden CMP(01),
    JMP(01) [non-compact, static, SU(2)];
    Oliynyk gq/02-wd [Einstein-Yang-Mills-dilaton];
    Brihaye & Hartmann CQG(05)ht/04 [4 + d dimensions, + cosmological constant];
    Künzle & Oliynyk JGP(06)-a0810 [Einstein-Yang-Mills-Higgs];
    Slagter IJMPD(09)-a0803 [+ Gauss-Bonnet];
    Bartnik et al a0907 [SO(5)];
    Lübbe & Valiente Kroon PRD(14)-a1403 [anti-de Sitter-like];
    Jackson a1808-PhD [numerical].
  @ With matter shells: Dray CQG(90) [joining Reissner-Nordström spacetimes and collapsing shells];
    Friedman et al PRD(97)gq;
    Zloshchastiev PRD(98)gq/97 [charged dust],
    gq/97;
    Hájíček PRD(98)gq/97,
    PRD(98)gq,
    & Bičák PRD(97)gq;
    Hájíček NPB(01)ht/00 [dynamics],
    & Kiefer NPB(01)ht/00 [embedding variables];
    Mazur & Mottola gq/01 [gravastar].
  @ Related topics: Petri gq/04 [string-like "holographic solution"];
    Saha a2008 [types of matter];
    > s.a. Bertrand Spacetimes; higgs
      field; kantowski-sachs metrics; monopoles;
      Nariai Metric; perturbations;
      solitons; wormhole solutions.
In Modified Theories > s.a. canonical quantum gravity;
  quantum black holes; semiclassical gravity.
  @ f(R) theories: Barraco & Hamity PRD(00) [first-order formalism];
    Multamäki & Vilja PRD(06)ap;
    Clifton CQG(06)gq-MGXI,
    PhD(06)gq,
    comment Faraoni CQG(09)-a0909;
    Navarro & Van Acoleyen JCAP(07)gq/06 [acceleration and other phenomenology];
    Multamaki & Vilja PRD(07)ap/06 [pfluid];
    Barausse et al CQG(08)gq/07 [no static polytropic spheres];
    Capozziello et al CQG(07)gq [Noether symmetry approach];
    Kainulainen et al PRD(07)-a0704;
    Saffari & Rahvar MPLA(09)-a0710 [consistency issue];
    Kainulainen & Sunhede PRD(08)-a0803 [stability];
    Capozziello et al CQG(08);
    Nzioki et al PRD(10)-a0908;
    Pandey & Sinha a0911;
    Capozziello et al GRG(12)-a1204 [and Noether symmetries];
    Gao & Shen GRG(16)-a1602 [static].
  @ Other higher-order gravity:
    Dean PhD(00)-a1312 [and orbital analysis];
    Seifert PRD(07)gq [instability, also Einstein-aether and TeVeS];
    Deser et al GRG(08)-a0705 [Einstein + non-polynomial];
    Mazharimousavi & Halilsoy PLB(10)-a1007 [Lovelock gravity + Yang-Mills fields];
    Kunstatter et al CQG(12)-a1201 [Lovelock gravity];
    Lü et al PRD(15)-a1508 [with quadratic curvature terms];
    Rodrigues-da-Silva & Medeiros PRD(20)-a2004;
    > s.a. modified electromagnetism [coupled to non-linear theory].
  @ f(T) gravity: Wang PRD(11)-a1102 [+ Maxwell theory];
    Böhmer et al CQG(11)-a1107 [stars];
    Daouda et al EPJC(11)-a1108,
    Ferraro & Fiorini PRD(11)-a1109 [static];
    Atazadeh & Mousavi EPJC(13)-a1212;
    Nashed GRG(13)-a1502;
    Paliathanasis et al PRD(14)-a1402 [Schwarzschild-like solutions];
    Golovnev & Guzmán a2103 [approaches].
  @ Other theories: Minkevich & Vasilevski gq/03 [metric-affine gauge theory];
    Wohlfarth CQG(04) [BF-like],
    comment Deser et al CQG(04)gq [re shortcut];
    Bhadra & Sarkar GRG(05)gq [vacuum Brans-Dicke];
    Esposito et al CQG(07) [variable G and Λ];
    Adler & Ramazanoğlu IJMPD(15)-a1308 [gravity with trace-dynamics modifications];
    Li et al CQG(16)-a1503 [in Lorentz-breaking massive gravity];
    Murk & Terno a2012 [consistency constraints];
    > s.a. Conformal Gravity; gauge-theory solutions;
      Gauss-Bonnet Gravity; massive gravity;
      theories of gravitation.
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 26 apr 2021