|  Black-Hole Perturbations | 
In General  s.a. black-hole phenomenology; quasinormal modes;
  chaotic motion; horizons;
  numerical black holes; quantum black holes.
  s.a. black-hole phenomenology; quasinormal modes;
  chaotic motion; horizons;
  numerical black holes; quantum black holes.
  * Stability: Stationary
    (M > 0) black holes are stable under local perturbations; The
    proof uses the fact that the linearized field equations imply the vanishing
    of an integral which would not vanish for frequencies with positive imaginary
    part; M < 0 black holes are unstable.
  @ General references: Pani IJMPA(13)-a1305-ln [techniques and open problems].
  @ Stability:
    Cohen & Wald JMP(71) [+ point charge];
    Wald JMP(73),
    CQG(86);
    in Chandrasekhar 83;
    Kokkotas PRD(88);
    Whiting & York PRL(88);
    Whiting JMP(89) [Kerr black hole];
    Wald JMP(92);
    Monteiro et al PRD(09)-a0903 [rotating black holes];
    Burinskii GRG(09)-a0903 [electrovac black holes];
    Monteiro PhD(05)-a1006 [classical and thermodynamic];
    Prabhu & Wald CMP(15)-a1501;
    Coutant et al CQG(16)-a1601 [dynamical instabilities in general];
    Dafermos et al a2104 [stability of Schwarzschild family of solutions];
    > s.a. black-hole geometry [black strings]; black-hole solutions;
    lovelock gravity; schwarzschild spacetime.
  @ Evaporating, late-time behavior: Barack PRD(99)gq/98;
    Parikh & Wilczek PLB(99)gq/98;
    Hod PRD(99)gq,
    PRL(00)gq/99.
  @ Changing M and a: Petrich et al PRL(88) [accreting];
    King & Kolb MNRAS(99)ap [binaries];
    Abramowicz et al ed-10 [accretion].
  @ Horizon fluctuations:
    Iso et al PLB(11)-a1008 [non-equilibrium];
    > s.a. black-hole entropy; gravitational thermodynamics.
  @ Related topics: Loustó & Whiting PRD(02)gq
      [Ψ and (ψ4, ψ0)];
    Cartas-Fuentevilla JMP(00)gq/02 [conservation laws];
    Sinha et al FP(03)gq/02 [backreaction and influence functional];
    Perjés & Vasúth CQG(03)gq [principal null directions];
    Birmingham & Carlip PRL(04)ht/03 [non-quasinormal modes];
    Ferrari et al PRD(06) [extended sources, general hybrid approach];
    Zenginoğlu PRD(11)-a1104 [geometric framework];
    > s.a. multipoles [polarizability].
Perturbations around Kerr
  > s.a. modified general relativity; kerr spacetime [stability].
  * Description: Massless fields of
    spin s = 1/2, 1, 3/2, or 2 are usually described in terms of Weyl scalars
    ψ4 and ψ0,
    which satisfy Teukolsky's complex master equation, a wave equation with added curvature terms,
    and respectively represent outgoing and ingoing radiation; They can also be described in terms
    of (Hertz-like) potentials Ψ in outgoing or ingoing radiation gauges; Equations describing
    massive spin-1 fields have not been shown to be separable.
  @ Linear: Misner BAPS(72) [scalar, stability];
    Kalnins et al PRS(96) [spin-1 and 2];
    Fernandes & Lun JMP(97) [gauge-invariant];
    Barack & Ori PRL(99) [decay of scalar perturbations];
    Campanelli et al CQG(01)gq/00;
    Moreno & Núñez IJMPD(02)gq/01;
    Ori PRD(03)gq/02 [particles/objects];
    Loustó CQG(05)gq [in terms of Weyl scalars];
    Yunes & González PRD(06)gq/05 [tidally perturbed];
    Wang BJP(05)gq [rev];
    Núñez et al PRD(10)-a1002;
    Lukes-Gerakopoulos et al PRD(10) [observable signature];
    Aksteiner & Andersson CQG(11) [various spins];
    Pani et al PRD(12)-a1209 [massive vector (Proca) fields];
    Aksteiner & Andersson CQG(13)-a1301 [non-radiating gravitational modes and conserved charges];
    Berti & Klein PRD(14)-a1408 [mixing of spherical and spheroidal modes];
    Casals & Zimmerman PRD(19)-a1801 [and late-time tails];
    Aksteiner & Bäckdahl PRL(18)-a1803 [all local gauge invariants];
    Grant & Flanagan a2005 [conserved currents].
  @ Teukolsky equation:
    Hartle & Wilkins CMP(74);
    Campanelli & Loustó PRD(97)gq [regularization];
    Campanelli & Loustó PRD(98),
    et al PRD(98),
    PRD(98)gq [Cauchy data];
    Bini et al PTP(02)gq;
    Pazos-Ávalos & Loustó PRD(05)gq/04 [numerical];
    Fiziev CQG(10)-a0908 [exact solutions].
  @ Higher-order: Campanelli & Loustó PRD(99)gq/98;
    Green et al a1908 [Teukolsky framework].
Other Single Black Holes > s.a. horizons;
  models in numerical relativity; perturbations
  in general relativity; quantum black holes.
  @ Reissner-Nordström: Burko PRD(99)gq [axial];
    Perjés GRG(03)gq/02;
    Berti & Kokkotas PRD(03)ht;
    Motl & Neitzke ATMP(03)ht [asymptotic frequencies];
    Pfister PRD(03) [t-independent];
    Dotti & Gleiser CQG(10)-a1001 [instability in inner static region];
    Aretakis CMP(11) [extreme, scalar perturbations];
    Hod PLB(12)-a1304,
    PLB(13) [stability under charged scalar perturbations];
    Hod PLB-a1410 [weakly-magnetized SU(2) black holes];
    Luk & Oh DMJ(17)-a1501 [instability of the Cauchy horizon  under scalar perturbations];
    Sela PRD(16)-a1510 [extremal, late-time decay of perturbations];
    Giorgi a1904-PhD
      [stability, linear gravitational and electromagnetic perturbations];
    Dotti & Fernández PRD(20)-a1911.
  @ Reissner-Nordström-AdS: Berti & Kokkotas PRD(03)gq.
  @ Kerr-NUT: Bini et al PRD(03)gq;
    Mukhopadhyay & Dadhich CQG(04)gq/03,
    gq/04-MG10 [scalar and spinor].
  @ Other types:
    Onozawa et al PRD(97) [supersymmetric];
    Perjés gq/02/CQG [rotating, and Λ];
    Das & Shankaranarayanan CQG(05) [generic singularities];
    Hamilton a0706 [self-similar, Newman-Penrose formalism];
    Dafermos CMP(14)-a1201 [without spacelike singularities].
  @ In other theories: Molina et al PRD(10)-a1005 [Chern-Simons-modified gravity];
    Varghese & Kuriakose MPLA(11)-a1010 [Hořava gravity, electromagnetic and Dirac perturbations];
    Kobayashi et al PRD(12)-a1202,
    PRD(14)-a1402 [scalar-tensor theory, around a static, spherically symmetric solution];
    Pratten CQG(15)-a1503 [f(R) gravity].
  > Other types: see black-hole
    geometry [black rings]; higher-dimensional black holes;
    kerr-newman solutions; schwarzschild
    spacetime; schwarzschild-de sitter spacetime.
Colliding Black Holes > s.a. models in numerical relativity.
  @ General references: Hawking PRL(71);
    Loustó & Price PRD(97)gq,
    PRD(98)gq/97 [data];
    > s.a. orbits of gravitating bodies.
  @ Close limit: Pullin PTP(99)gq-in;
    Gleiser et al NJP(00)gq;
    Khanna PRD(01)gq,
    PRD(02)gq.
  @ Approach to stationarity: Hod PRL(00)gq/99;
    Kamaretsos et al PRD(12)-a1107 [ringdown signals and progenitor parameters]. 
  @ Related topics: Rácz & Wald CQG(96)gq/95 [global extensions].
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 20 apr 2021