|  Gravitational Radiation | 
In General > s.a. detection
  [motivation for search]; analysis
  [including other theories of gravity]; graviton.
  * Idea: Wavelike solutions
    of the linearized Einstein equation, propagating at the speed of light;
    Ripples in a reference spacetime.
  * History: 1918,
    Einstein showed that the linearized equation admits such solutions; Many
    believed that they would not carry energy/momentum, although calculations
    showed they would; 1936, Einstein, Infeld & Rosen state that there are
    no gravitational waves, based on the belief that such solutions are singular
    (the paper was turned down by a PR referee who claimed it had mistakes;
    the referee was Robertson, Einstein was furious, and Robertson turned out
    to be right); 1949, Landau pseudotensor; 1950s, Bondi, Feynman argue that
    gravitational waves carry energy, and 1957 Chapel Hill Conference
    discussion; 1970s, Weber's bar detector; 1980s, Thorne, Damour, well-defined
    framework; > s.a. history
    of relativistic gravity.
  * Evidence: 1999, Indirect, from the
    increase of the binary pulsar period (75 × 10−6
    sec/yr); 2005, Better binary pulsar.
  * Significance:
    Their existence supports the idea that spacetime is a real, physical
    entity, like water in a pool.
  > Online resources:
    see Thorne et al Caltech 2002 web-based course;
    The Gravitational Lens newsletter;
    Marc Favata's Sounds of Spacetime.
Theory > s.a. asymptotic
  flatness at null infinity; gauge invariance;
  orbits of gravitating bodies [with radiation].
  * Properties: Contrary to
    the previous opinion of some people, it carries energy and momentum (see
    news tensor, Bondi mass, etc); Even perturbatively, tmn(1) ≠ 0
    for + and × polarizations; It has spin 2, as can be seen from (a) Linearization
    of the Einstein equation around gab
    = ηab; In the
    weak-field limit the spin appears as the eigenvalue of the corresponding
    Casimir operator; (b) Study of the asymptotic theory, for which the
    Poincaré group is an exact symmetry group.
  * Characterization:
    A useful tool is the study of the spin coefficients in the Newman-Penrose
    formalism, or the Beetle-Burko radiation scalar, all constructed using the
    Weyl tensor (> see spin coefficients,
    weyl tensor).
  * Mode decomposition:
    A global decomposition analogous to the E and B mode
    decomposition of electromagnetic waves, which corresponds to the even or
    odd parity of the sky pattern of the polarization of the radiation.
  * Open questions:
    Do general solutions have the falloff required by the scri formalism?
    One does not start from Cauchy data and construct full solutions;
    An important thing is to try to remove symmetry requirements; Come up
    with a coordinate-invariant characterization of gravitational waves for
    spacetimes with a positive cosmological constant.
  * In scalar-tensor
    gravity: Linearized gravitational waves in Brans-Dicke and
    scalar-tensor theories carry negative energy.
  @ Properties: Trautman BAPS(58)-a1604 [energy flux, from Sommerfeld boundary conditions];
    Walker & Dual gq/97 [longitudinal, near field];
    Aldrovandi et al FP(07)-a0709 [importance of non-linearity];
    Brink PRD(08)-a0807 [and spacetime reconstruction];
    Price et al AJP(13)aug-a1212 [comparison with electromagnetic radiation];
    Ashtekar & Bonga GRG(17)-a1707 [ambiguity in transverse traceless modes];
    Chu & Liu CQG(20)-a1902 [acausality of TT gravitational waves];
    Blanchet a1902-CRAS;
    Chang et al a2009 [second-order waves];
    > s.a. propagation [including speed].
  @  Scalar-tensor gravity:
    Scharre & Will PRD(02),
    Will & Yunes CQG(04) [LISA, waveforms];
    Sotani & Kokkotas PRD(04)gq [neutron star seismology];
    Faraoni PRD(04) [stability of Minkowski];
    Yunes et al PRD(12)-a1112 [extreme-mass-ratio inspirals];
    Sotani PRD(14)-a1402 [scalar waves from relativistic stars];
    Lang JPCS(15)-a1408 [compact binaries];
    Kuntz et al JCAP(19)-a1902 [effective theory];
    > s.a. gravitational-wave background.
  @  Higher-dimensional gravity:
    Cardoso et al PRD(03);
    Durrer & Kocian CQG(04) [quadrupole formula and binary pulsar];
    Seahra et al PRL(05)gq/04 [branes, spectroscopy];
    Alesci & Montani IJMPD(05)gq/04 [5D Kaluza-Klein],
    IJMPD(05);
    Clarkson & Maartens GRG(05)ap-GRF;
    Clarkson & Seahra CQG(07);
    McWilliams PRL(10)-a0912;
    Yagi et al PRD(11)-a1103 [braneworld gravity];
    Andriot & Lucena JCAP(17)-a1704 [signatures];
    Kwon et al a1906 [5D Kaluza-Klein modes];
    Ganjali & Sedaghatmanesh a1910 [effects on LIGO];
    Du et al a2004 [waveform];
    > s.a. gravitational-wave
      background and sources.
  @ Teleparallel gravity: Obukhov et al CQG(09)-a0909 [plane waves];
    Sharif & Taj MPLA(10) [cylindrical and spherical waves];
    Nashed ChPB(10)-a1101;
    Hohmann et al PRD(18)-a1807 [propagation].
  @ Higher-order theories: Upadhye & Steffen a1306 [f(R) gravity, monopole radiation];
    Lambiase et al JCAP(15)-a1503 [and damping of binary orbital period];
    Gürses et al PRD(15)-a1509 [3D higher-derivative gravity];
    Hölscher PRD(19)-a1806;
    Capozziello et al IJGMP(19)-a1812;
    Katsuragawa et al a1902
      [f(R) gravity, scalar waves and Chameleon mechanism].
  @ With torsion:
    Bamba et al PLB(13)-a1309 [f(T) gravity];
    Blagojević & Cvetković PRD(14)-a1406 [3D];
    Alves et al PRD(16)-a1604 [f(R,T) gravity];
    Cai et al PRD(18)-a1801 [f(T), after GW170817 and GRB170817A].
  @ Other theories of gravity:
    Mirshekari PhD(13)-a1308;
    > s.a. astrophysical tests of gravity;
      conformal gravity; gravitation [frameworks];
      gravity theories [scalar-vector-tensor]; gravitational-wave
      analysis; MOND; phenomenology of hořava gravity.
Types and Effects > s.a. angular momentum;
  background; early-universe cosmology;
  propagation and sources;
  thermodynamics.
  @ Polarization: Canfora et al PLB(02) [non-linear waves];
    > s.a. gravitational-wave sources.
  @ Energy-momentum: Abramo PRD(99)ap [very long wavelength];
    Cooperstock AP(00)gq/99,
    MPLA(99)gq ["no E"];
    Garecki AdP(02)gq/01;
    Sharif NCB(01)gq,
    IJMPA(02)gq/01 [example];
    Dereli & Tucker CQG(04) [energy-momentum density];
    Mannheim PRD(06)gq [covariant];
    Ruiz et al GRG(08)-a0707 [multipole expansion];
    Aldrovandi et al IJTP(10)-a0809;
    Abbassi & Mirshekari IJMPA(08)-a0908;
    Garecki a1612-conf.
  @ Background-independent:
    Agresti et al GRG(04)gq/03,
    gq/03;
    Lusanna gq/04-conf,
    gq/04-ch.
  @ Analog systems: Fernandez-Corbaton et al SRep(15)-a1406 [quantum emulation];
    > s.a. emergent gravity [analog simulation].
  @ Related topics: Preder & Yourgrau IJTP(77) [shock waves];
    Schmidt PRS(87) [near infinity];
    Burnett JMP(89) [high-f limit];
    van Putten & Eardley PRD(96)gq/95 [as Yang-Mills waves];
    Esposito CQG(01)gq [Green functions];
    Stewart GRG(06) [shock waves];
    Deffayet & Menou ApJL(07)-a0709 [spacetime sirens as probes of new gravity];
    Bruschi & Fuentes a1607 [extracting energy];
    > s.a. chaotic motion.
 Phenomenology: see astronomy [multimessenger astronomy];
  electromagnetic waves; gravitational-wave
  solutions; petrov-pirani classification.
 Phenomenology: see astronomy [multimessenger astronomy];
  electromagnetic waves; gravitational-wave
  solutions; petrov-pirani classification.
References
  > s.a. canonical quantum gravity; Penrose Inequality;
  quantum-gravity phenomenology; stress-energy pseudotensor.
  @ Intros, reviews: in Heaviside 1894 [precursor];
    Weber 61;
    Pirani in(65);
    Hawking CP(72),
    reprint CP(09);
    in Misner et al 73; Zakharov 73;
    Walker in(83);
    Schutz AJP(84)may,
    EAA(00)gq;
    Damour in(87);
    Thorne 91,
    in(95);
    Chakrabarty phy/99;
    Blanchet LNP(00)gq-in [post-newtonian];
    Schutz & Ricci ln(01)-a1005 [sources and detection, pedagogical];
    Gibbs SA(02)apr;
    Hughes AP(03)ap/02;
    Centrella AJP(03)RL-gq/02;
    Sathyaprakash gq/04-conf;
    Flanagan & Hughes NJP(05)gq;
    Maggiore gq/06-fs;
    Kennefick 07;
    Buonanno a0709-ln;
    Maggiore 08, 18;
    Sathyaprakash & Schutz LRR(09)-a0903;
    Creighton & Anderson 11;
    Farr et al AJP(12)-a1109 [in the high-school classroom];
    Riles PPNP(13)-a1209;
    Cerdonio & Losurdo RNC(12)#8;
    Pereira a1305;
    Kuroda et al IJMPD(15)-a1511-ch [classification, detection, sources];
    Le Tiec & Novak in(17)-a1607;
    Prasanna a1610;
    Chen et al ChJP(17)-a1610;
    van Holten a1611-proc;
    de Cesare et al FdP(17)-a1701-ln [as a tensor field in Minkowski spacetime];
    Blanchet a1701;
    Bieri et al NAMS(17)-a1710 [overview of the mathematics];
    Gasperini a1811 [IT];
    McWilliams et al a1902 [status];
    Cacciatori a2005.
  @ Conferences: Smarr ed-79;
    Królak ed-97;
    Ciufolini et al ed-00;
    issue CQG(02)#7 [Amaldi 4];
    issue CQG(03)#17 [analysis 7];
    issue CQG(04)#5 [Amaldi 5];
    issue CQG(04)#20 [analysis 8];
    issue CQG(06)#8 [Amaldi 6];
    issue CQG(07)#19 [analysis 11];
    issue CQG(08)#11 [Amaldi 7];
    issue CQG(08)#18 [analysis 12];
    issue CQG(10)#8 [Amaldi 8];
    issue CQG(10)#19 [analysis 14];
    issue CQG(12)#12 [Amaldi 9, NRDA 2011];
    > s.a. interferometers.
  @ Gravitational Waves Notes:
    Amaro-Seoane et al a1002 [#2],
    a1005 [#3],
    a1009 [#4].
  @ General references: Weber & Wheeler RMP(57);
    Bondi et al PRS(62);
    Sachs PR(62),
    PRS(62),
    in(64);
    Komar PR(64);
    Van der Burg PRS(66);
    Blanchet & Damour PTRS(86);
    Friedrich CMP(86);
    Blanchet PRS(87);
    Bondi & Pirani PRS(89);
    Blanchet et al LNP(01)gq/00;
    Ni MPLA(10)-a1003-proc [classification, space-based detectors and dark energy];
    Centrella AIP(11)-a1109-TX25;
    Ferrando & Sáez CQG(12)-a1111 [Bel's radiative gravitational fields];
    Andersson et al CQG(13)-a1305 [transient events, state of the art and challenges];
    Collins a1607 [imitation game];
    Rostworowski PRD(15)-a1705 [non-linear];
    Romero FS-a1708,
    Dirkes IJMPA(18)-a1802 [conceptual];
    Fernández-Álvarez & Senovilla a1909 [novel characterisation].
  @ Different points of view:
    Denisov & Logunov TMP(80) [non-existence];
    Burdet & Perrin LMP(92) [gravitons];
    Loinger ap/98,
    ap/99,
    ap/99,
    ap/99/NCB,
    ap/99/NCC,
    NCB(00)ap,
    gq/00 [speed of thought!];
    Marshall a0707;
    Chakalov's site;
    Pereira a1305 [conceptual issues].
  @ And quantum theory: Ashtekar PRL(81),
    JMP(81),
    in(81) [asymptotic quantization];
    Manoukian GRG(90);
    Lovas HIP(01)gq/99;
    Unnikrishnan & Gillies CQG(15)-a1508 [quantum-gravitational optics];
    Cardoso et al PRD(16)-a1608,
    Agulló et al a2007 [gravitational-wave signatures].
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 27 sep 2020