|  Kaluza-Klein Models and Solutions | 
5D Abelian Theory > s.a. torsion in physics.
  * Effective 4D fields:
    If the 5D metric has a Killing vector field along the 5th dimension, one gets
    a 4D metric, a scalar field (the size of the orbit, or norm of the Killing
    vector), and a 1-form that can be identified with the electromagnetic one.
  @ General references: Orzalesi FdP(81);
    Salam & Strathdee AP(82);
    Sajko et al JMP(98) [4+1 split];
    Ding et al MPLA(05)gq [Palatini form].
  @ Hamiltonian form: Sajko IJMPD(00);
    Lacquaniti & Montani gq/06-MGXI,
    NCB(07)gq;
    > s.a. ADM formalism.
  @ Effective potential:
    Appelquist & Chodos PRD(83);
    Kunstatter et al PRD(86);
    Kunstatter & Leivo PLB(87).
  @ Energy, charges: Blau CQG(87);
    Bombelli et al NPB(87);
    Deser & Soldate NPB(89);
    Grégoire CQG(91);
    > s.a. positive-energy theorem.
  @ Instability of vacuum, bubbles:
    Witten NPB(82);
    Duncan et al NPB(88);
    Brill & Pfister PLB(89);
    Corley & Jacobson PRD(94)gq;
    Shinkai & Shiromizu PRD(00)ht.
  @ Decay of magnetic field: Dowker et al PRD(95)ht.
  @ Inconsistency?: Duff et al PLB(84);
    Coquereaux & Jadczyk NPB(86);
    Mbelek & Lachièze-Rey gq/00/CQG.
  @ Non-compactified:
    Darabi & Wesson PLB(02) [conformal invariance];
    Wesson a1003 [and 4D Higgs field].
  @ Related topics:
    Gavela & Nepomechie CQG(84) [discrete symmetries];
    Rosen FP(88);
    Ellicott & Toms CQG(89);
    Wesson CQG(02)gq,
    PLB(02)gq [5D \(\mapsto\) 4D particle motion];
    Shankar & Wali MPLA(10)-a0904 [with torsion, and cosmology].
Non-Abelian Theories > s.a. types of yang-mills theories.
  @ General references: Cho JMP(75),
    & Freund PRD(75);
    Cho & Jang PRD(75);
    Orzalesi FdP(81);
    Weinberg PLB(83);
    Coquereaux & Esposito-Farèse AIHP(90);
    Rayski & Rayski NCA(90);
    Kihara & Nitta PRD(07)-a0704 [compactified to Einstein-Yang-Mills with higher-derivative coupling];
    Eingorn et al CQG(13) [with spherical compatification].
  @ Non-Abelian 5D theory: Böhmer & Fabbri MPLA(07)-a0710
      [all SU(n) Einstein-Yang-Mills theories from 5D with torsion].
  @ Matter: Luciani NPB(78);
    Orzalesi & Pauri PLB(81);
    Witten NPB(81) [supergravity];
    Destri et al AP(83),
    LNC(83).
Particular Solutions
  > s.a. black holes in higher dimensions.
  * From lower dimensions:
    From a 4D solution gab,
    then a 5D one is 5ds2
    = gab
    dxa dxb
    + dψ2; From every stationary solution
    in 3 + p dimensions, one can get a static one in 3 + p + 1 dimensions.
  @ With Killing vector fields (Ehlers-Harrison-Geroch-etc method):
    Maison GRG(79);
    Burzlaff & Maison JMP(79);
    Clément GRG(86);
    Bruckman PRD(87);
    Lee JMP(87),
    JMP(87);
    Matos GRG(87);
    & Breitenlohner & Maison.
  @ Belinsky-Khalatnikov transformation: Belinsky & Khalathikov JETP(73);
    Belinsky & Ruffini PLB(80).
  @ Spherically symmetric:
    Angus NPB(86) [5D, naked singularity];
    Cvetič & Youm PRL(95)ht;
    Azreg-Ainou et al G&C(00)gq/99;
    Jakimowicz & Tafel IJTP(09)-a0810.
  @ Monopoles, Abelian: Sorkin PRL(83),
    in(83),
     in(84);
    Gross & Perry NPB(83);
    Gibbons & Perry NPB(84) [and N = 8 supergravity multiplets],
    pr(85) [and pyrgon-monopole duality];
    Sundaresan & Tanaka PRD(86);
    Carlip PRD(86);
    Macías & Matos CQG(96);
    Cavalcanti de Oliveira & Bezerra de Mello CQG(04) [in global monopole background];
    Mann & Stelea PLB(06) [mass];
    Bizoń et al PRL(06)gq [perturbations, stability].
  @ Monopoles, non-Abelian:
    Horváth & Palla NPB(78);
    Bais & Batenburg NPB(85);
    Angus NPB(86);
    Mann & Stelea NPB(05)ht;
    Cotăescu NPB(05);
    Jakimowicz & Tafel IJTP(09).
  @ Dyonic wormholes: Dzhunushaliev & Singleton GRG(00)gq/99 [foam and tests];
    Chen CQG(01)gq/00;
    Vacaru & Singleton JMP(02)ht/01,
    CQG(02)ht/01.
  @ Solitons: Ponce de León IJMPD(08);
    Eingorn & Zhuk PRD(11) [with toroidal compactification, viability of models]. 
  @ Other solutions: Ben Amor LMP(86) [perfect fluid];
    Fukui et al JMP(01)gq [5D cosmological];
    Pugliese & Montani EPJC(11)-a1104 [5D star models];
    Dzhunushaliev & Folomeev MPLA(14)-a1309 [wormholes with a compactified fifth dimension];
    Branding et al CMP(19)-a1804 [cosmological].
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 2 jul 2020