|  Theory of Cosmological Perturbations | 
General Theory
  > s.a. perturbations in general relativity [gauge-invariant, gravitational waves].
  * Idea: Perturbations are almost always done by expanding the metric around FLRW spacetimes as background.
  * Motivation: The evolution of cosmological perturbations
    of an averaged FLRW model  allows us to make predictions for structure formation
    and cosmological radiation backgrounds, that can be checked against observation; The linearized theory
    can be trusted because the perturbations of interest are currently of order 1, so they must have been
    small in the past (gravity enhances them in time).
  * Weinberg theorem: There always exist two adiabatic scalar
    modes in which the comoving curvature perturbation is conserved on super-horizon scales.
  @ Reviews: Mukhanov et al PRP(92);
    Tsagas LNP(02)ap;
    Brandenberger LNP(04)ht/03, ht/05-ln;
    Straumann AdP(06)hp/05-ln;
    Tsagas et al PRP(08)-a0705;
    Malik & Matravers CQG(08)-a0804 [concise intro];
    Malik & Wands PRP(09)-a0809;
    Gorbunov & Rubakov 10 [and inflation];
    Lesgourgues a1302-ln.
  @ Parametric resonance / amplification:
    Finelli & Gruppuso PLB(01)hp/00 [electromagnetic].
  @ Correlation functions: Marcori & Pereira JCAP(17)-a1612 [from isometries of the background metric].
  @ Related topics: Couch & Torrence CJP(96) [gauging];
    Lukash PU(06)ap [tensor and scalar perturbations];
    Capozziello et al PS(09)-a0905 [tomographic description];
    Allen & Rendall a0906 [initial singularity and late-time asymptotics];
    Christopherson PhD-a1106 [applications, higher-order];
    Eingorn et al EPJC(15)-a1407 [need for vanishing average perturbations];
    Akhshik et al JCAP(15)-a1508 [Weinberg theorem, loopholes].
   Related topics:
    see averaging; quantum cosmological perturbations.
 Related topics:
    see averaging; quantum cosmological perturbations.
Higher-Order Perturbations
  > s.a. gravitating many-body systems.
  @ Non-Gaussianity: Bartolo et al JCAP(04);
    Cabass et al JCAP(17)-a1612.
  @ Second-order: Malik & Wands CQG(04)ap/03;
    Nakamura PRD(06)gq,
    PTP(07)gq/06,
    PTP(09)-a0812 [gauge-invariant],
    a0901-proc [consistency conditions];
    Hwang & Noh PRD(07);
    Senatore et al JCAP(09)-a0812;
    Noh et al PRL(09)
      [infrared divergence of Einstein contribution to density power spectrum];
    Nakamura PRD(09) [matter fields],
    AiA(10)-a1001 [status],
    a1001-proc [with scalar field];
    Appignani et al JCAP(10), a1002-MG12 [non-canonical scalars, ambiguities];
    Hamazaki PRD(11)-a1107 [gradient expansion, leading order];
    Anselmi et al JCAP(11) [next-to-leading-order resummations];
    Uggla & Wainwright GRG(13)-a1203 [minimal approach],
    CQG(14)-a1312 [simple expressions];
    Domènech & Sasaki PRD(18)-a1709 [Hamiltonian approach]; 
    Uggla & Wainwright CQG(19)-a1801 [better formulation],
    PRD(18)-a1808 [minimal, dynamics];
    Wang & Zhang PRD(19)-a1905;
    Nakamura a1912-ch [gauge-invariant, rev].
  @ Second-order, curvature perturbations: Dias et al JCAP(15)-a1410;
    Carrilho & Malik JCAP(16)-a1507 [vector and tensor contributions].
  @ Third and higher-order: Hwang & Noh JCAP(07)-a0704 [pressureless fluids];
    Christopherson & Malik JCAP(09)-a0909 [gauge transformations];
    Prokopec & Weenink JCAP(13)-a1304
      [third-order gauge invariant action for scalar-graviton interactions in the Jordan frame];
    Nakamura CQG(14)-a1403 [recursive structure];
    Nandi & Shankaranarayanan JCAP(15)-a1502 [constraint consistency between two approaches],
    JCAP(16)-a1512,
    JCAP(16)-a1606,
    Nandi a1707-PhD  [Hamiltonian analysis].
  @ Non-linear effects: Matarrese & Pietroni MPLA(08)ap/07,
    JCAP(07)ap,
    comment Rosten JCAP(08)-a0711 [renormalization group and structure];
    Pietroni JCAP(08)-a0806;
    Juszkiewicz et al JCAP(10)-a0901;
    Langlois & Vernizzi CQG(10)-a1003 [geometrical approach];
    Christopherson CTP(12)-a1111-GRF [signatures of non-linear perturbation theory];
    Christopherson et al CQG(11) [comparing two approaches];
    Macpherson et al PRD(17)-a1611 [numerical approach].
Approaches and Types
  @ Effective field theory: Piazza & Vernizzi CQG(13)-a1307;
    Senatore JCAP(15)-a1406 [bias];
    Burgess et al JHEP-a1408
      [open systems, and the quantum-to-classical transition];
    Vlah et al JCAP(15)-a1506 [Lagrangian framework].
  @ Gauge-invariant variables: Malik & Matravers GRG(13)-a1206;
    Giesel et al CQG(18)-a1801 [using geometrical clocks],
    CQG(19)-a1811 [dynamics of Dirac observables].
  @ Other approaches:
    Bertschinger ap/01-proc;
    Bartolo et al PRD(04)ap/03 [scalar + fluid];
    Bashinsky PRD(06)ap/04 [cmb and matter];
    Carbone & Matarrese PRD(05)ap/04 [evolution framework];
    Casadio et al PRD(05)gq/04 [WKB analysis];
    Strokov AR(07)ap/06 [hydrodynamical and field approaches];
    Enqvist et al PRD(07)gq [covariant];
    Carlson et al PRD(09)-a0905 [assessment];
    Green & Wald PRD(11)-a1011 [mathematically precise framework];
    Uggla & Wainwright CQG(11)-a1102 [simple and concise form];
    Matsumoto PRD(11)-a1105 [ΛCDM model];
    Miedema a1106 [and the evolution of small-scale inhomogeneities];
    Szapudi & Czinner CQG(12)-a1111 [based on Lie-group representations];
    Pietroni et al JCAP(12) [coarse-grained];
    Hortua & Castañeda a1407-proc [equivalence between formulations];
    Rostworowski a1902 [Regge-Wheeler formalism].
  @ Long-wavelength perturbations:
    Unruh ap/98 [exact solutions];
    Carroll et al PRD(14)-a1310 [consistent effective theory].
  @ Other types:
    Afshordi & Johnson PRD(18)-a1708 [cosmological zero modes].
  > Specific spacetimes and theories: see cosmological models;
    models and phenomenology [including other theories]; types of black holes
    [primordial].
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 5 jul 2020