|  Stress-Energy Pseudotensors | 
In General > s.a. energy
    and perturbations in general relativity.
  * Idea: The various two-index
    objects tab that are
    constructed for a metric gab,
    or a linear perturbation hab
    from Minkowski, and used as "stress-energy of the gravitational field"
    to express the total 4-momentum or angular momentum as volume integrals.
  * Issue: No true energy-momentum
    tensor (that is, non-vanishing on shell) can be defined for the gravitational
    field, as a consequence of the equivalence principle; Some people have, as a
    result, doubted the validity of gravitational energy-momentum and angular
    momentum transfer.
  * Properties: They are not
    geometrical objects – they can always be made to vanish at any given
    point –, and they are not unique; These are reflections of the
    non-localizability of gravitational energy-momentum; There is no actual
    tensor which is appropriate.
  * General expression:
tab:= \(1\over16\pi G\) [Hambn,mn(h) − 2G(2)ab(h)] ,
    where Hambn is locally
    constructed, quadratic in hab,
    and satisfies Hambn
    = H[am]bn
    = Ham[bn]
    = Hbnam.
  * 3-forms: A similar role
    is played by certain 3-forms which are conserved modulo the field
    equations, such as the Sparling 3-form.
Canonical Stress-Energy Pseudotensor
  * Expression:
    The one obtained, in terms of the metric perturbation
    hab:=
    gab
    − ηab,
    h'ab:=
    hab −
    \(1\over2\)hηab, as
Hambn:= −(h' ab ηmn + h' mn ηab − h'mb ηan − h' an ηmb) .
Landau-Lifshitz Pseudotensor
  * Idea: The symmetric
    tLLab,
    quadratic in the first derivatives of the metric, such that for an asymptotically
    flat spacetime,
pa = ∫Σ TLL, effa0 d3x, where TLL, effab:= |g| (T ab + tLLab) .
@ References: Landau & Lifshitz v2; Trautman in(62); in Misner et al 73, §20.22; Persides & Papadopoulos GRG(79); Sardanashvily gq/94.
Freud Pseudotensor
  $ Def: The expression
    (which has often been incorrectly called "von Freud pseudotensor")
θab:= −\(1\over8\pi G\)tGab + tTab + \(1\over8\pi G\)[tgabgmn (Γrms Γsrn − Γrmn Γsrs) + grb (Γamn tgmn,r − Γmnm tgna,r)] .
    (the "t" here denotes a  densitized tensor, of weight 1).
  @ References: Freud AM(39);
    Frauendiener CQG(89);
    Notte-Cuello & Rodrigues a0801;
    Böhmer & Hehl PRD(18)-a1712 [in general relativity and Einstein-Cartan theory].
Gravitational Noether Operator
  * Expression:
    In terms of hmnab
    = |g| (gma
    gnb
    − gna
    gmb),
    it is given by
T mn · Xn = −\(1\over8\pi G\)|g|1/2 Gmn Xn + \(1\over2\)∂a (|g|−1/2 hmnab,b Xn) .
@ References: Schutz & Sorkin AP(77); Bak et al PRD(94)ht/93.
Superenergy Tensors
  > s.a. Bel-Robinson; Chevreton.
  * Examples: The Bel tensor, Bel-Robinson
    tensor Tmnab, the Chevreton tensor.
  * Relationships: In Riemann normal
    coordinates, Tmnab
    = ∂2mn
    tab, where
    tab is a
    combination of Einstein and Landau-Lifshitz pseudotensors.
  @ General references: Roberts GRG(88);
    Mashhoon et al PLA(97)gq/96;
    Senovilla CQG(00)gq/99,
    gq/99-proc,
    mp/02-proc;
    Balfagón & Jaén CQG(00) [computational];
    Pozo & Parra CQG(02)gq/01;
    Lazkoz et al CQG(03)gq [superenergy currents];
    Garecki a1209-conf [reappraisal].
  @ Related topics: Deser CQG(03)gq [higher-derivative generalizations];
    Tintareanu-Mircea & Popa CEJP(05)gq/04 [from Killing-Yano tensors];
    Bini & Geralico CQG(18)-a1809 [and energy content of electromagnetic and gravitational plane waves].
Other References
  > s.a. conservation; gravitational
  energy; schwarzschild spacetime.
  @ General: in Wald 84, pp84ff;
    Szabados CQG(92) [differential geometry formulation];
    Magnano & Sokołowski CQG(02)gq/01 [and gauge];
    Montesinos gq/03-in
      [gravitational Tmn, covariance and equations of motion];
    Deser FP(05)gq/04-in [and conservation];
    So et al CQG(09)-a0901 [small regions];
    Pitts a0910-conf.
  @ Proposals: Anderson PRD(97)gq/96 [gravitational waves];
    Babak & Grishchuk PRD(00)gq/99;
    Nikishov PPN(01)gq/99;
    Tung & Nester gq/00-proc [tetrad/spinor];
    Lau gq/06,
    Lo et al CQG(09) [and Bel-Robinson tensor].
  @ 3-forms: Bonanos CQG(97);
    > s.a. Sparling Forms.
  @ Tolman energy-momentum complex: Radinschi MPLA(00)gq [static, spherical],
    APS(00)gq [Bianchi I],
    APS(99)gq/00,
    MPLA(00)gq [dyonic black hole].
  @ And quasilocal quantities: Chang et al PRL(99)gq/98.
  @ In other gravity theories: de Andrade et al PRL(00)gq,
    gq/00-GR9 [in teleparallel gravity];
    Capozziello et al IJTP(10)-a1001 [f(R) gravity];
    Capozziello et al AdP(17)-a1702 [higher-order theories];
    Capozziello et al IJGMP(18)-a1804
      [f(R) and f(T) gravity].
  @ Related topics: Yilmaz NCB(92) [wrong];
    Mashhoon et al CQG(99)gq/98 [gravitomagnetic];
    Sokołowski APPB(04)gq/03 [fields carrying no energy];
    Butcher et al PRD(12)-a1210 [linearized gravity, gravitational spin tensor].
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 26 dec 2018