|  Metric Matching | 
In General > s.a. types of metrics.
  * Idea: Establish junction
    / matching conditions that a metric and its derivatives must satisfy
    across a hypersurface in order for conditions such as field equations to
    be satisfied at least in a distributional sense, e.g., distributional
    sources corresponding to thin matter shells in general relativity.
  * Lichnerowicz conditions:
    In general relativity, the Lorentzian metric gab
    and its first derivatives ∂a
    gbc must be continuous
    across a discontinuity surface; Higher derivatives need not be.
  * Note on validity: Metrics
    are known with thin shell matter for which the metric is not continuous
    across the corresponding hypersurface; Marolf and Yaida have conjectured
    that in general relativity, in all positive-energy spacetimes, the metric
    is continuous across hypersurfaces.
References
  > s.a. action for general relativity [singular hypersurfaces];
  gravitating matter; models
  in canonical general relativity.
  @ Spacelike / timelike hypersurface:
    Israel NCB(66), NCB(67);
    in Misner et al 73, #21.13;
    Ipser & Sikivie PRD(84) [domain walls];
    Fayos et al PRD(96) [spherical symmetry];
    Lapiedra & Morales-Lladosa PRD(19)-a1910 [discontinuous source].
  @ Spacelike / timelike, beyond thin wall:
    Garfinkle & Gregory PRD(90).
  @ Null hypersurface: Penrose in(72) [spinors];
    Redmount ["contranormal" coordinates];
    Dray & 't Hooft CMP(85) [two Schwarzschild metrics separated by null shell];
    Clarke & Dray CQG(87);
    Gemelli GRG(02) [rev, timelike/null];
    Poisson gq/02.
  @ General hypersurface:
    Barrabès CQG(89);
    Mars & Senovilla CQG(93)gq/02;
    Ferraris et al in(96);
    Nozari & Mansouri JMP(02);
    Vera CQG(02)gq [and symmetries];
    Raju a0804-MG5 [distributional matter, shocks].
  @ Perturbations: Mukohyama CQG(00)ht;
    Mars et al CQG(07);
    Copeland & Wands JCAP(07) [and cosmology];
    Huber EPJC(20)-a1908.
  @ Lemaître-Tolman-Bondi solutions:
    Khakshournia & Mansouri G&C(08) [and FLRW spacetimes];
    Khakshournia GRG(10)-a0907 [and Vaidya exterior solution].
  @ Other special types: Israel PRS(58) [spherically symmetric];
    Grøn & Rippis GRG(03)gq [Schwarzschild-FLRW spacetimes];
    Kirchner CQG(04) [spherically symmetric];
    Copeland & Wands JCAP(07)ht/06 [cosmological];
    Mena & Natário JGP(09) [stationary].
  @ And energy conditions:
    Goldwirth & Katz CQG(95)gq/94;
    Marolf & Yaida PRD(05)gq.
  @ At spacetime singularities: Khakshournia & Mansouri ht/99 [spherically symmetric, with singular hypersurface];
    Rosenthal a1011.
  @ Other topics: Schmidt GRG(84)gq/01 [and surface tension];
    Taylor CQG(04) [at a corner];
    Chatterjee & Anand NPB(19)-a1810 [at fractal hypersurfaces].
  > Related topics: see boundaries in
    field theory; constraints and solutions in general
    relativity [gluing of solutions].
In Modified Gravity Theories
  @ Higher-order gravity: Deruelle et al PTP(08)-a0711 [f(R) gravity];
    Senovilla PRD(13)-a1303,
    CQG(14)-a1402 [for f(R)-gravity, and consequences];
    Reina et al CQG(16)-a1510 [junction conditions in quadratic gravity];
    Olmo & Rubiera-García CQG(20)-a2007 [Palatini f(R) gravity];
    Berezin et al CQG(21)-a2008,
    PPN(20)-a2009 [shells in quadratic gravity];
    Kolář et al PRD(21)-a2012 [infinite-derivative gravity].
  @ Scalar-tensor theories: 
    Padilla & Sivanesan JHEP(12)-a1206 [generalized];
    Avilés et al CQG(20)-a1910 [null or non-null, arbitrary dimensionality].
  @ Other theories: Bressange CQG(00)gq [shells in Einstein-Cartan theory];
    Macías et al PRD(02) [metric-affine gravity];
    Giacomini et al PRD(06)gq [with spinning sources];
    de la Cruz-Dombriz et al JCAP(14)-a1406 [extended teleparallel gravity];
    Khakshournia & Mansouri IJMPD(20)-a2006 [Einstein-Cartan gravity].
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 29 may 2021