|  Types of Gauge Theories | 
In General > s.a. gauge theory; lagrangian
  dynamics and systems; quantum
  gauge theory; types of field theories; yang-mills theory.
  * Matter fields: Described by
    smooth cross sections of associated vector bundles, with fiber V; If
    we choose a basis for V at each point of M, the components
    of a cross section are a multiplet of particles.
  * Interactions: They arise from
    the sections by parallel transport by the connections in the associated principal
    fiber bundle; Symmetry breaking corresponds to reduction of the fiber bundle.
  * Massive: Mass-generating
    mechanisms for gauge fields are the addition of a Proca/Pauli-Fierz term, or
    in 3D a Chern-Simons term, to the action; The Stückelberg field method,
    or the Higgs mechanism in spontaneous symmetry breaking.
  > Related topics:
    see boundaries in field theory.
Special Types > s.a. electromagnetism;
  parametrized; supersymmetric theories;
  topological field theories; types of yang-mills theories;
  unified theories.
  * Groups: It is normally assumed that the
    only regularizable, and therefore viable ones (as quantum field theories) are the ones
    based on finite-dimensional compact gauge groups; This may not necessarily be the case.
  @ Groups: Weyl SPAW(18) [gauge principle];
    Pawłowski TJP(99)hp/98 [gauge theory of scale];
    Brandt PRD(01)ht [spacetime symmetries];
    Doplicher & Piacitelli RVMP(02)ht [any compact G is ok];
    Makeenko proc(05)ht/04 [large-N, review].
  @ Matter: Horan et al Pra(98)ht [charged particles];
    Tolksdorf & Thumstaedter JMP(06)mp/05,
    Myers & Ogilvie JHEP(09)-a0903 [fermions];
    García Canal & Schaposnik FJMP-a1110 [approach to coupling];
    Goldman et al RPP(14)-a1308 [light-induced effective gauge fields for ultracold atoms];
    > s.a. poincaré group [continuous-spin particles].
  @ And spacetime transformations:
    Michor in(88) [diffeomorphisms];
    Brodbeck HPA(96)gq;
    Pons et al JMP(00)gq/99 [diffeomorphisms in Einstein-Yang-Mills];
    Aldaya et al JMP(03)mp/02;
    Minguzzi CQG(03)gq/02 [simultaneity in fiber bundle language];
    Aldaya & Sánchez-Sastre gq/05-conf,
    JPA(06);
    Tresguerres IJGMP(08)-a0707 [translational symmetry];
    Percacci JPA(08)-a0803 [mixing];
    Wiesendanger PRD(09)-a0903 [volume-preserving diffeomorphisms];
    > s.a. bianchi models; gauge theory solutions;
    lorentz group phenomenology; particle physics.
  @ 3D: Ghosh JPA(00)ht/99 [massive Thirring],
    AP(01)ht/00 [master theory];
    > s.a. Jackiw-Pi Theory.
  @ Massive: Scharf NCA(99)ht;
    Deser et al AP(00),
    Harikumar et al PRD(01) [topologically];
    Harikumar & Sivakumar MPLA(00);
    Deser & Tekin CQG(02)ht/02 [3D, Proca/Pauli-Fierz and Chern-Simons terms];
    Acosta & Kirchbach FPL(05)gq/04 [in DSR];
    Bertrand a0705-proc [topologically];
    Dütsch et al EPJC(10)-a1001 [without classical Higgs mechanism];
    Kruglov IJTP(11)-a1010 [Maxwell-Chern-Simons, topologically massive];
    Kiriushcheva et al CJP(12)-a1112 [first-order form];
    Bergshoeff et al JHEP(12)-a1207 [spin-2, topologically massive, beyond 3D];
    Slavnov TMP(13) [gauge-invariant infrared regularization of Yang-Mills theory];
    Vyas & Srinivasan IJTP(16)-a1510 [and quantisation];
    > s.a. Proca Theory.
  @ Diffeomorphism-invariant:
    Husain & Kuchař PRD(90);
    Peldán PRD(92)ht [Ashtekar-like, arbitrary G],
    NPB(94)gq [general-relativity-like];
    Barbero et al PRD(98)gq;
    Husain CQG(99)ht [diff-invariant SU(N)];
    Barbero et al JHEP(19)-a1906 [Husain-Kuchař model  on manifolds with boundary];
    > s.a. BF theory.
  @ Consistent interactions:
    Witten PLB(82);
    Henneaux CM(98)ht/97 [cohomology, BRST];
    Bizdadea APPB(01)ht/00,
    & Saliu PS(00) [BRST];
    Brandt PRD(01)ht;
    Henneaux & Rahman PRD(13)-a1306
      [gauge symmetry and causal propagation requirements].
  @ Other: Vachaspati PRD(09)-a0809 [bi-fundamental fields, and cosmology];
    Aharony et al JHEP(13)
      [different theories from the freedom in the choice of magnetic and dyonic line operators];
    Bourget et al NPB(19)-a1804 [disconnected gauge groups, principal extensions];
    Kapoor a2104 [axial vector gauge theory];
    > s.a. Chiral Theories; gauge transformations [Lie groupoids
      as generalized symmetries]; Percolation; Quiver
      Gauge Theory; stochastic quantization [axial vector gauge theory].
Generalizations > s.a. lattice gauge theory;
  non-commutative gauge theories; non-local theories;
  quantum groups; yang-mills theories.
  @ Non-linear: Anco JMP(97)mp/02 [3D];
    Anco AP(98) [4D, spin-2 and 3/2];
    Elze IJTP(08)-a0704 [and non-linear quantum mechanics];
    Signori & Stiénon JGP(09) [structure group replaced by a Lie groupoid].
  @ Higher-rank connections: Henneaux & Knaepen PRD(97)ht,
    NPB(99)ht/98,
    IJMPA(00)ht/99 [p-forms, consistent interactions];
    Barbero & Villaseñor NPB(01)ht/00 [s-form quadratic actions];
    Pfeiffer AP(03)ht,
    Girelli & Pfeiffer JMP(04)ht/03 [2-forms, differential vs integral];
    Botta Cantcheff PLB(04) [Kalb-Ramond];
    Singleton et al PLA(04) [from gauging a phase symmetry];
    Baez & Schreiber ht/04 [2-connections on 2-bundles];
    Akhmedov TMP(05)ht [area-ordering – {non-abelian fluxes?}];
    Baez & Huerta GRG(11)-a1003-ln [introduction];
    Wang JMP(14)-a1311 [3-gauge theories];
    Grützmann & Strobl IJGMP(14)-a1407 [p-form gauge fields];
    > s.a. Gerbes; holonomy;
      lattice gauge theory; quantum gauge theory.
  @ Spin-2: Scharf & Wellmann ht/99;
    Anco PRD(03) [parity-violating deformation];
    > s.a. 3D gravity.
  @ Spin-3: Bekaert et al JHEP(06)ht/05 [consistent interactions];
    Boulanger et al PRD(06) [parity-violating vertices];
    Asorey et al PRD(15)-a1511 [symplectic gauge fields, and dark matter].
  @ Higher-spin: Sezgin & Sundell JHEP(02)ht [even s];
    Francia & Sagnotti CQG(03) [geometry];
    Bengtsson JMP(05)ht/04,
    JMP(07)ht/06;
    Iazeolla laurea(04)ht,
    PhD-a0807;
    Bekaert & Boulanger NPB(05) [gauge invariants, Killing tensors];
    Sezgin & Sundell ht/05-proc [cosmology];
    Cnockaert PhD(06)ht;
    Guttenberg & Savvidy Sigma(08)-a0804 [Schwinger-Frønsdal theory];
    Boulanger et al JHEP(08) [uniqueness of minimal coupling];
    Henneaux IJGMP(08) [and N-complexes];
    Bengtsson FdP(09)-a0902 [mechanical models];
    Bekaert et al JHEP(09) [interactions with matter];
    Manvelyan et al NPB(10),
    NPB(11) [cubic interactions];
    Doroud & Smolin a1102 [action and Hamiltonian formulation];
    Akshay & Ananth JPA(14)-a1304 [cubic interaction vertices];
    Fredenhagen & Kessel JPA(15)-a1408 [frame-like and metric-like formulations];
    Rivelles PRD(15)-a1408 [and continuous spin];
    Sarkar & Xiao PRD(15)-a1411 [holographic representation];
    Vasiliev LNP(14)-a1404 [and spacetime interpretation];
    Savvidy proc(16)-a1511;
    Brink et al ed-16 [proc];
    Casarin a1710-MS;
    Kuzenko & Ponds JHEP(18)-a1806 [topologically massive];
    Vuković a1809-MS [rev];
    Steinacker a1911 [and gravity];
    > s.a. higher-order gravity theories; higher-spin
      fields; quantization; solutions.
  @ Non-associative spaces: 
    de Medeiros & Ramgoolam JHEP(05);
    Majid JMP(05)m.QA;
    Ootsuka et al ht/05 [octonionic, based on a Moufang loop];
    Loginov JMP(07) [based on a Moufang loop];
    > s.a. non-commutative gauge theories;
    Non-Associative Geometry [standard model].
  @ Twisted symmetries: Aschieri et al LMP(06)ht;
    Vassilevich MPLA(06);
    Giller et al PLB(07) [consistency].
  @ Discrete:
    Dimakis & Müller-Hoissen JPA(94);
    Matsuura et al PTEP(15)-a1411 [exact results];
    Notarnicola et al JPA(15)-a1503 [abelian];
    > s.a. lattice gauge theory;
    types of yang-mills theories [on a simplicial complex].
  @ Other generalized spaces:
    Selesnick JMP(95) [quantum net];
    El Baz MPLA(06) [4D quantum space];
    > s.a. causal sets.
  @ Higher gauge theories: 
    Ritter et al JHEP(16)-a1512 [generalization related to double field theory];
    Asante et al a1908 [and quantum geometry];
    Radenković & Vojinović a2005-proc [examples].
  @ Other: Alfaro ht/97 [antisymmetric fields];
    Jackiw ht/97;
    Roepstorff JMP(99)ht/98,
    ht/98 [superconnections on superbundles];
    Brandt et al CQG(00)ht/99;
    Nottale et al ht/03 [in scale relativity];
    Anco IJGMP(04)mp [deformations];
    Lyakhovich & Sharapov NPB(04) [Poisson supermanifolds + homological vector fields];
    Cuzinatto et al AP(07)ht/05 [second-order];
    Aldaya et al RPMP(07) [extended gauge and diffeomorphism symmetries];
    Guendelman & Steiner IJMPA(15)-a1506 [with varying effective electric charge];
    Canarutto a2011 [without groups];
    > s.a. differential forms [generalized];
      generalized uncertainty principle; Notoph;
      Scale Relativity; types of field theory [daor].
Applications to Other Fields
  @ In finance: Ilinski ht/97-proc.
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 19 apr 2021