|  Bianchi Classification of Cosmological Models | 
In General
  > s.a. Homogeneity; Isotropic Metric.
  * Idea: It is a classification
    of most spatially homogeneous anisotropic cosmologies; What Bianchi really
    did was to classify the three-dimensional Lie algebras, but the Lie algebra
    can be taken to be that of the isometry group, and the two things become
    equivalent; The original scheme has been later modified.
  $ Def: Spacetimes with a 3D
    group G of isometries acting freely and (simply) transitively
    on spacelike hypersurfaces.
  * Motivation: The vacuum or
    perfect fluid models give simple equations, which however are non-linear
    enough to study anisotropy, singularities, chaotic dynamics, horizon
    structure, gravitational waves, non-Newtonian Weyl curvature, etc.
  * Classification: If the
    Lie algebra is generated by Killing vector fields ξi
    (i = 1, 2, 3), with commutators [ξi,
    ξj]
    = Cijk
    ξk, choose a triad of left-invariant
    vector fields Li such that
Cijk = εijl nlk + δjk vi − δik vj ,
    where nij
    = diag(n1,
    n2,
    n3),
    ni
    = ±1, 0, and vi
    = (0,1; 0,1; 0,1), with vi
    nij
    = 0; Types are classified by the combinations of values
    of ni
    and vi
    (class A has vi = 0,
    class B has vi ≠ 0);
    The dual forms χi
    are also left-invariant.
  * Killing vector fields:
    They generate the isometries, so they are right-invariant and satisfy
[ξi, ξj]a = Ckij ξka , [ξ, η]a = Cabc ξb ηc .
  * Left-invariant forms: There are three
    1-forms \(\sigma^i{}_a\), such that qab
    = gij
    σia
    σ jb
    and ∇[a
    σib]
    = −\(1\over2\)Ccab
    σic.
  * Metric: It is often parametrized in
    an ADM-like form by a volume element and a shear matrix β, such that
ds2 = −N2(t) dt2 + gij(t) σiσj , gij = exp{−2Ω(t)} (exp{2β(t)})ij ;
the simplest case is for types I, II, VIII, IX, in which g or β are diagonalizable; With some loss of generality,
gij = e−2Ω(t) diag(a(t), b(t), 1/ab) , βij = diag(β+ + 31/2 β−, β+ − 31/2 β−, − 2β+) .
Special Cases and Models
  > s.a. bianchi I, bianchi IX, and
  other models; scalar-tensor theories.
  @ Class / type A:
    Schücking et al GRG(03) [diagram];
    Apostolopoulos CQG(03)gq [self-similar];
    Ferragut et al JGP(12) [with k = 1, analytic integrability].
  @ Class / type B: Apostolopoulos CQG(05)gq/04 [self-similar];
    Yamamoto PRD(12)-a1108 [with electromagnetic fields].
  @ Compact: Koike et al JMP(94) [topologies];
    Tanimoto et al JMP(97)gq/96,
    JMP(97)gq;
    Coley & Goliath PRD(00)gq [fluid + scalar];
    Kodama PTP(02)gq/01 [fluid];
    Torre CQG(04)gq [weakly locally homogeneous].
 Specific models: see bianchi I models;
  bianchi II-V models; bianchi VI-VIII models;
  bianchi IX models.
 Specific models: see bianchi I models;
  bianchi II-V models; bianchi VI-VIII models;
  bianchi IX models.
References
  > s.a. geodesics; minisuperspace quantum
  cosmology; neural networks; quasilocal energy;
  types of singularities.
  @ Early references: Bianchi MMSI(1897),
    translation GRG(01);
    Bianchi 18;
    Misner PR(69) [ADM].
  @ Reviews: in Misner et al 73;
    MacCallum in(73)-a2001;
    Ryan & Shepley 75;
    MacCallum in(79);
    Jantzen in(84);
    Ellis GRG(06).
  @ EMW variables: Ellis & MacCallum CMP(69);
    MacCallum & Ellis CMP(70);
    MacCallum CMP(71);
    Wainwright in(88);
    Wainwright & Hsu CQG(89);
    Wainwright & Ma in(92);
    Hewitt & Wainwright CQG(93).
  @ Ashtekar variables: Kodama PTP(88);
    Ashtekar & Pullin in(90);
    Ashtekar & Samuel CQG(91);
    Manojlović & Miković CQG(93);
    Obregón et al PRD(93)gq;
    González  & Tate CQG(95)gq/94 [I and II];
    Calzetta & Thibeault gq/97/CQG [I, II, IX].
  @ Symmetries and reduction: Coussaert & Henneaux CQG(93)gq;
    Schirmer CQG(95);
    Capozziello et al IJMPD(97) [Noether symmetries and general relativity];
    Christodoulakis et al CMP(02)gq/01 [invariant characterization];
    Apostolopoulos CQG(05) [new approach].
  @ Hamiltonian / Lagrangian:
    Ryan & Waller gq/97 [class B];
    Tanimoto et al JMP(97)gq [compact];
    Pons & Shepley PRD(98)gq.
  @ Dynamics, general: Bonilla CQG(98);
    Byland & Scialom PRD(98)gq [I, II, Kantowski-Sachs];
    Billyard PhD(99)gq;
    Szydłowski & Krawiec IJMPA(00) [constraint solved];
    Aguiar & Crawford PRD(00)gq [I + III, dust and Λ];
    Barrow & Hervik CQG(02)gq [Weyl curvature invariant];
    Gambini & Pullin CQG(03) [discretized];
    Fay gq/05-in [+ massive scalar, ADM];
    Goheer et al CQG(07)-a0710 [in f(R) theories].
  @ Stability:
    Barrow & Sonoda PRP(86) [several V, VI, VII models];
    Zotov gq/99.
  @ Isotropization:
    Cervantes-Cota & Chauvet PRD(99)gq/98 [I-V-IX, induced gravity];
    Fay CQG(03) [class A],
    gq/05-in [scalar-tensor];
    Barzegar et al a1904 [massless Einstein-Vlasov system];
    > s.a. types I, VII, IX.
  @ In Einstein-Yang-Mills theory: Donets et al PRD(99) [N = 2 supersymmetric].
  @ In higher-order theories:
    Querella PhD(98)gq/99;
    Barrow & Hervik PRD(06)gq [I + II, quadratic theories];
    Middleton CQG(10) [I, VIII, IX, anisotropy and approach to singularity]. 
  @ Other theories: Savaria gq/97 [non-symmetric gravity];
    Bonneau CQG(98) [Einstein-Weyl spaces];
    Cognola & Zerbini IJTP(08)-a0802 [generalized gravity theories];
    > s.a. modified electrodynamics; non-commutative physics.
  @ Kinds of matter: Rendall & Uggla CQG(00)gq [Einstein-Vlasov];
    Calogero & Heinzle PhyD(11)-a0911 [anisotropic matter];
    Normann et al CQG(18)-a1712 [p-form gauge fields];
    Thorsrud CQG(19)-a1905 [free massless scalar field].
  @ Phenomenology:
    Coley & Lim CQG(07) [bounds on shear];
    > s.a. cmb anisotropy.
  @ Related topics: Estabrook et al JMP(68);
    Siklos CMP(78) [horizons and whimper singularities];
    Rosquist & Jantzen PRP(88);
    Fujiwara et al CQG(93)gq;
    Di Pietro & Demaret IJMPD(99)gq [duality];
    De Ritis et al NCB(01) [horizons];
    Doliwa et al JGP(04) [discretization];
    Hervik ap/05,
    Palle ap/05
      [re vorticity, > s.a. cmb];
    Heinzle & Uggla CQG(10) [monotonic functions];
    Avetisyan & Verch CQG(13)-a1212 [harmonic and spectral analysis].
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 1 feb 2020