|  Supersymmetric Theories | 
Types of Theories
  > s.a. types of field theories / modified
  quantum mechanics [supersymmetric]; supersymmetric gauge theories.
  * Wess-Zumino model:
    The simplest model of global supersymmetry, with Lagrangian
L = − \(1\over2\)(∂a A)2 − \(1\over2\)(∂a B)2 − \(1\over2\)λ* (γ · ∂) λ,
    with A a scalar, B a pseudoscalar, λ
    of spin-1/2, λ*:= λ†
    γ4.
  @ General references: Haber & Haskins TASI(18)-a1712 [intro]. 
  @ Wess-Zumino model:
    Wess & Zumino NPB(74);
    Girotti et al NPB(00)ht [non-commutative];
    Britto & Feng PRL(03) [N = 1/2 is renormalizable];
    Ritter CMP(04)ht/03 [vacuum geometry];
    Synatschke et al a0909-proc [phase diagram];
    Dimitrijević et al PRD(10)-a1001 [deformed];
    Yu & Yang PRL(10)
      [simulation with cold atom-molecule mixtures in 2D optical lattices];
    Frasca JNMP(13)-a1308 [massless, classical solutions];
    > s.a. supersymmetry breaking.
  @ Wess-Zumino-Witten model:
    Witten NPB(83),
    CMP(84);
    Gawedzki ht/99-ln;
    Lugo PLB(01),
    Moreno & Schaposnik NPB(01) [non-commutative];
    Gawedzki et al CMP(04)ht/01 [boundary theory, canonical quantization];
    Arcioni et al JGP(04) [on random Regge triangulations];
    Liao PRD(06) [in odd-dimensional spacetime];
    > s.a. bundle [gerbes].
  @ Supersymmetric extension of local Lorentz symmetry:
    Abe & Nakanishi IJMPA(89),
    IJMPA(90).
  @ Emergent supersymmetry: Jackiw & Polychronakos PRD(00)ht [fluid dynamics];
    Goh et al JHEP(05)ht/03,
    JHEP(06);
    Lee PRB(07)cm/06 [in a lattice model at a quantum critical point];
    Lee a1009-ln [in condensed-matter systems];
    Huijse et al PRL(15)-a1403 [1+1 dimensional models];
    Gao & Liu  JHEP(18)-a1701;
    Zhao & Liu npjQM(19)-a1706 [supersymmetry (non-)emergence at a quantum critical point].
  @ Spin chains:
    Kagan & Young NPB(08);
    Hagendorf JSP(13)-a1207 [with dynamical lattice supersymmetry].
  @ 3D theories:
    Awad & Faizal JHEP(15)-a1503 [3D scalar field theories];
    Cottrell et al JHEP(16)-a1509 [and their gravity duals].
  @ Other theories:
    Andreev JRLR(92) [2-level systems];
    Metz et al PRL(99)
    + pn(99)aug [nuclear physics];
    Rupp et al NPB(01) [non-linear realizations];
    Requardt IJGMP(05)mp/04 [on graphs/networks];
    Ho & Tanaka AP(06) [Schrödinger, Pauli, Dirac equations];
    Correa & Plyushchay AP(07) [hidden supersymmetry in bosonic systems];
    news pw(08)mar [in ultracold atoms, proposal];
    Horváthy et al PRD(10)-a1004 [between Jackiw-Nair and Dirac-Majorana anyons];
    Fendley & Hagendorf JSM(11)-a1011 [fermion chain, ground state];
    Fan et al JHEP(12) [stealth supersymmetry];
    Wu et al a1812 [fermion-boson symmetry];
    > s.a. higher-spin theories; sigma models;
    stochastic quantum mechanics.
  > Related topics : see Axinos;
    boundaries in field theory.
Modified Supersymmetric Theories
  > s.a. types of quantum field theories.
  * Pseudo-supersymmetry: It
    arises in brane world models, where two branes preserve different halves of
    the bulk supersymmetry; Supersymmetry is broken, although each sector of the
    model is separately supersymmetric.
  @ Fractional supersymmetry:
    Mohammedi MPLA(95);
    de Azcárraga & Macfarlane JMP(96)ht/95;
    Dunne et al IJMPA(97).
  @ Parasupersymmetry:
    Tanaka AP(07) [quantum many-body systems];
    > s.a. fock space [parasupersymmetric system].
  @ Non-linear realizations: Clark & Love PRD(04)ht [Goldstino and R-axion];
    Love MPLA(05).
  @ Non-commutative geometry:
    Hussain & Thompson PLB(91),
  PLB(91);
    Chamseddine PLB(94);
    Terashima PLB(00)ht;
    Habara PTP(03)ht/02;
    Beenakker et al a1409 [almost commutative geometries],
  a1409 [supersymmetry breaking].
  @ Non-commutative supersymmetric Yang-Mills:
    Kalau & Walze JGP(97);
    Hashimoto & Itzhaki PLB(99)ht [AdS-cft],
    JHEP(99)ht [and ordinary].
  @ Moyal-Weyl deformed: Ferrara & Lledó JHEP(00)ht.
  @ Without Grassmann variables: Cahill JHEP(01)ht.
  @ In curved spaces: Kehagias & Russo NPB(13)-a1211 [d-dimensional];
    Dumitrescu a1608-in [intro].
  @ Other generalizations:
    Devchand & Nuyts AIP(98)ht [Lorentz-covariant generalizations];
    Maumary & Ojima mp/00 [and homotopy];
    Klein PRD(02)ht,
    PRD(03)ht/02,
    ht/02-conf [pseudo-supersymmetry];
    Besnard mp/04 [number-operator algebras];
    Frampton MPLA(06)ht/05 [misaligned supersymmetry];
    Álvarez et al PLB(14)-a1306,
    Symm(21)-a2104 [unconventional representation, without supersymmetric partners];
    Ho a1506 [off-shell supersymmetry];
    Meyer et al JHEP(17)-a1703 [non-relativistic supersymmetric field theories];
    > s.a. Supersymmetry [non-associative].
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 8 may 2021