|  3-Dimensional Classical Gravity | 
In General > s.a. 3D general relativity;
  3D massive gravity; 3D quantum gravity.
  @ General references:
    Blagojević & Cvetković PRD(10)-a1003 [conserved charges];
    Nelson a1804-in [rev];
    Deser a1910-fs;
    Geiller et al a2011 [covariant phase space, dual diffeomorphisms];
    > s.a. lattice gravity.
  @ Quadratic:
    Accioly et al JPA(01) [with Chern-Simons term],
    PLA(01),
    MPLA(01),
    PRD(03) [with Chern-Simons term];
    Accioly & Dias MPLA(04) [unitarity];
    > s.a. higher-order theories.
  @ Without dynamics: Husain CQG(92) [without Hamiltonian constraint];
    Escalante & Ochoa-Gutiérrez AP(17)-a1610 [canonical and symplectic analysis].
  @ Other theories:
    Cornish & Frankel PRD(91);
    Waelbroeck NPB(91) [time];
    Zanelli BJP(00)ht-ln [Chern-Simons gravity];
    Bezerra et al gq/01 [Jackiw's];
    Cacciatori et al PLB(02)gq [Einstein-AdS];
    Arias & Gaitan FPC(09)-a0709 [self-dual spin-2 theory];
    Escalante & Manuel-Cabrera AP(14)-a1308 [exotic action, Hamiltonian];
    Bergshoeff et al PRL(13)-a1307 [zwei-dreibein action];
    Boulanger et al JHEP(14)-a1312 [fractional-spin];
    Mazumdar & Stettinger NPB(20)-a1811 [infinite-derivative].
  > Types of theories: see bimetric
    gravity; born-infeld theory; brans-dicke theory;
    Scalar Theory; Schouten Gravity;
    types of field theories [generally covariant].
Matter, Solutions and Phenomenology
  > s.a. gravitational collapse.
  @ General references: Meusburger AIP(09)-a1001,
    a1001-conf,
    GRG(11)-a1001-conf [holonomy and geometry reconstructed from measurements].
  @ With topological matter:
    Gegenberg et al PLB(90);
    Mann & Popescu CQG(06)gq/05 [0-form and 2-form].
  @ With other matter: Fernando GRG(02)gq [rotating dilaton solutions];
    Özçelik et al AP(18)-a1611 [conformal scalar field].
  @ Black holes:
    Yamazaki & Ida PRD(01) [Einstein-BI-dilaton];
    Sousa & Maluf PTP(02)gq/03 [teleparallel];
    > s.a. 3D black holes.
  @ Cosmology: Hellerman JHEP(11)-a0902 [Λ < 0, maximum mass of excitation];
    Creminelli et al CMP(20)-a1902 [Λ > 0, asymptotic behavior].
Chern-Simons Form, Topological Gravity
  > s.a. 3D general relativity; chern-simons theory;
  Metric-Affine Gravity; Topological Gravity.
  * For vanishing cosmological constant:
    3D general relativity, formulated as an ISO(2,1)-Chern-Simons gauge theory, which is
    integrable; If the phase space is chosen to be that of flat connections modulo gauge
    transformations, the theory is purely topological.
  * For non-vanishing cosmological constant:
    For positive Λ, general relativity can be formulated as a SO(3,1) gauge theory,
    and for negative Λ, as a SO(2,2) gauge theory.
  @ General references:
    Achúcarro & Townsend PLB(86);
    Roček & Van Nieuwenhuizen CQG(86);
    Teitelboim & Zanelli CQG(87);
    Holz CQG(88);
    Witten PLB(88);
    Bengtsson PRD(89);
    Myers NPB(90),
    PLB(90);
    Myers & Periwal NPB(90);
    Soda & Yamanaka MPLA(91);
    Birmingham & Rakowski GRG(93);
    Aliev & Nutku CQG(95)gq/98,
    CQG(96)gq/98;
    Meusburger & Schroers CQG(03)ht;
    Deser & Tekin CQG(03)gq [energy];
    Park JHEP(08)-a0805 [degrees of freedom and gravitons];
    Bergshoeff et al LNP(15)-a1402 [Hamiltonian form];
    Merbis PhD(14)-a1411;
    Sarkar & Vaz PRD(17)-a1706 [canonical];
    Hajihashemi & Shirzad PRD(18)-a1704 [Hamiltonian, vielbein formalism].
  @ Quantization:
    Percacci AP(87).
  > Related topics:
    see black holes in modified theories.
Conformal Gravity
  > s.a. Conformal Gravity / topological field theory.
  * Action: In Chern-Simons
    form for connection defined in terms of dreibein; SO(3,2) gauge theory.
  @ General references:
    Deser et al AP(82),
    PRL(82);
    Horne & Witten PRL(89);
    Mannheim in(91);
    Vaz & Witten NPB(92).
  @ Related topics: García-Compeán et al PRD(00)ht/99 [self-dual].
Deformed and Other Modified Theories
  @ General references: Mignemi IJMPA(05)ht/04 [deformed anti-de Sitter algebra, solutions];
    Alkaç et al PRD(18)-a1810 [Bachian gravity].
  @ Non-commutative:
    Valtancoli CQG(05)ht [with pointlike sources];
    Schroers PoS(07)-a0711 [lessons learned].
  @ Supersymmetric: Guadagnini et al PLB(90);
    Cvetković & Blagojević CQG(07)gq [with torsion];
    Bergshoeff et al CQG(11) [massive 3D supergravity];
    Alvarez et al CQG(15)-a1505 [with mass generation and effective cosmological constant];
    Georgiou a1510 [higher-spin supergravity].
  @ With torsion: Blagojević & Cvetković
    in(06)gq/04;
    González & Vásquez JHEP(11)-a0907 [Chern-Simons term, solutions];
    > s.a. gravitational radiation.
  @ Higher-spin gravity: Mann & Popescu IJMPA(07)gq/06 [and higher-rank gauge theory];
    Fujisawa & Nakayama CQG(13) [spin-3];
    Burrington et al a1309 [and cosmological singularities];
    Afshar et al PRL(13) [spin-3, in 3D flat space];
    Honda et al PRD(17)-a1511 [exact path integral];
    Caroca et al NPB(18)-a1712 [Chern-Simons].
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 20 nov 2020