|  Types of Yang-Mills Gauge Theories | 
In General > s.a. gravity;
  QCD and QCD phenomenology.
  * Choice of algebra:
    Yang-Mills theories can be constructed with "quasiclassical" Lie
    algebras, a class which contains reductive as well as solvable ones; If we
    require theories to be ghost-free, then only the standard ones based on
    compact Lie algebras are allowed, but solvable gauge theories may be relevant
    for some integrable models based upon the zero-curvature condition.
  * U(1): Used to describe
    electromagnetism and QED
    (the original one), hypercharge, baryon number, lepton number.
  * SU(2): Used to describe isospin.
  * SU(2) × U(1): Used in the Weinberg-Salam electroweak theory.
  * SU(3): Used to describe QCD, the charge being color.
  * SU(5): Used in grand unified theories.
  * SO(3,1): Used in attempts
    to make a gauge theory of gravity.
  @ Original theory: Schrödinger ZP(22);
    Fock ZP(26);
    London ZP(27);
    Weyl ZP(29);
    Pauli RMP(41).
  @ U(1) / Abelian theory: Lantsman a1406 [topological Dirac variables, sectors].
  @ SU(3): Bolokhov & Faddeev TMP(04) [infrared variables];
    Goncharov PLB(05)hp [confinement].
  @ Other groups: Baekler et al in(86) [affine group];
    Shiraishi IJMPA(92)-a1302 [U(∞) from dimensional reduction of higher-derivative theories];
    Nuyts & Wu PRD(03) [non-semisimple];
    Lucini & Panero PRP(13) [SU(N), for large N];
    Frasca a1705
      [SU(N), spectrum, next-to-leading order correction].
  @ Non-Abelian theories: Klein in(38);
    Yang & Mills PR(54) [SU(2)];
    Utiyama PR(56) [more general];
    Mayer NC(59);
    Thirring AP(60) [Lorentz group];
    Kibble JMP(61);
    Glashow & Gell-Mann AP(61) [attempt at unification];
    Bergmann  & Flaherty JMP(78).
  @ Chiral: Gambini & Trias PRD(83);
    Ball PRP(89).
  @ With scalar matter: Chopin JHEP(00) [gauge-invariant variables].
  @ With Higgs field:
    Teh IJMPA(01) [axisymmetric solutions];
    Matinyan & Ng JPA(03) [partition function and level density].
  @ Related topics: Andersson 86 [and cohomology];
    Okubo JPA(98) [solvable algebras];
    Langmann & Niemi PLB(99)ht [SU(2) and strings];
    in Mavromatos & Winstanley CQG(00)ht/99 [SU(∞) and black holes].
Modifications > s.a. Ghost Field;
  non-commutative field theory; self-dual gauge theories.
  @ General references:
    Wellner AP(81);
    Chaves ht/98-ch,
    ht/01-ln;
    Chaves & Morales ht/99-proc,
    MPLA(00)ht/99 [grand unification];
    Fujii et al IJGMP(06)ht ["universal"];
    Bonora & Giaccari a2103 [HS Yang-Mills-like models].
  @ With boundary: Sengupta CMP(97);
    > s.a. gauge theories; poisson structures [Poisson algebra].
  @ Massive:
    't Hooft NPB(71) [renormalizable model];
    Baleanu NCB(03) [Hamilton-Jacobi];
    Bettinelli et al PRD(08)-a0705 [from non-linear realizations];
    Bettinelli & Ferrari APPB(13)-a1209 [weak-coupling limit];
    Yildirim a1412-PhD [topologically massive];
    García-Saenz et al JHEP(16)-a1511 [spin-2 partially massless, no-go result].
  @ With higher derivatives: Polonyi & Siwek PRD(12)-a1209 [and Higgs field];
    Dai a1912 [with matter fields, consistent interactions].
  @ Supersymmetric: Brink et al NPB(77);
    Berkovits & Hull JHEP(98) [D = 10 action];
    Ananth et al JPA(20)-a2001 [without anticommuting variables];
    > s.a. supersymmetric field theories.
  @ Deformed: Finkelstein ht/02 [SU(3)q];
    Ünsal & Yaffe PRD(08)-a0803 [double trace deformation];
    Cofano et al PRD(15)-a1501;
    Kotov & Strobl PRD(15)-a1510 [with curved field space];
    Santos & Sobreiro EPJC(17)-a1612 [Lorentz-violating].
  @ Other modified theories:
    Baez ht/02 ["Lie 2-groups"];
    Strobl PRL(04) [Lie algebroids];
    Setare NPB(06) [2D non-local U(N)];
    Restuccia & Veiro JPCS(16)-a1412 [octonionic gauge field];
    > s.a. born-infeld theory; BRST theory;
      QCD; string phenomenology;
      types of gauge theories [higher spin]; unified theories.
Other Dimensionalities and Curved / Discrete Spacetime
  > s.a. lattice field theory.
  @ 0+1 dimensions: Fuster & van Holten JMP(05)ht [SU(2), BRST quantization].
  @ 1+1 dimensions: Reinhardt & Schleifenbaum AP(09) [Hamiltonian, Coulomb gauge];
    Azuma et al a1207 [on a circle, at finite temperature].
  @ 2+1 dimensions: Alimohammadi & Tofighi EPJC(99)ht/98 [on 2D sphere, phase transition];
    Karabali et al NPB(00) [with Chern-Simons term];
    Diakonov & Petrov PLB(00) [gauge-invariant];
    Schulz hp/00;
    Nair NPPS(02)ht,
    MPLA(03)ht-in [rev];
    Díaz et al PRD(06) [surface invariants];
    Agarwal et al NPB(08)-a0705 [coupling to scalar matter];
    Fukuma et al JHEP(08),
    Karabali et al NPB(09)-a0906 [Hamiltonian formalism];
    Frasca a1408 [ground state];
    Schulz a1605 [note on point-splitting regularization].
  @ Higher dimensions: López-Osorio et al PRD(14)-a1402 [compactified];
    García-Jiménez et al a1801 [Kaluza-Klein  effective description].
  @ In curved spacetime:
    Choquet-Bruhat in(91) [on Lorentzian manifolds];
    Sánchez-Monroy & Quimbay AP(12) [1+1, 2+1 and 3+1 dimensional SU(N)
      theory in anti-de Sitter and Schwarzschild metrics, confining behavior];
    Ghanem a1312 [global existence].
  @ Discretizations: Castellani & Pagani AP(02)ht/01;
    Rajeev ht/04-conf [simplicial];
    Sushch CUBO(04)mp,
  CUBO(06)mp [on a complex].
  > Theory: see formulations of general relativity;
    quantum spacetime; spin-foam models.
  > Properties and solutions:
    see cosmological models;
    fields in schwarzschild spacetime;
    general relativity solutions with matter.
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 21 mar 2021