|  BF Theory | 
In General > s.a. branes;
  lattice gauge theory; yang-mills gauge theory.
  *  Idea: A topological
    gauge theory, used as model for gravity, with variables a connection
    Aai and a Lie-elgebra valued 2-form
    Babi, and action
S = ∫M tr(B ∧ F) .
  @ General references: Broda in(05)ht [summary].
  @ Spin-foam models: Baez LMP(96)qa/95;
    Baez LNP(00)gq/99;
    Maran gq/03,
    gq/03,
    PRD(04)gq.
  @ Discretized: Kawamoto et al NPB(00)ht/99 [4D];
    Oriti & Williams PRD(01)gq/00 [and Barrett-Crane model];
    Mnev ht/06 [simplicial].
  @ Connections: Cattaneo et al JMP(95),
    CMP(99)m.DG/98;
    Cattaneo et al LMP(00)m.QA [Wilson loops].
  @ Canonical-symplectic form:
    Mondragón & Montesinos JMP(06)gq/04,
    Montesinos CQG(06)gq [4D, covariant];
    Durka et al PRD(10)-a0912,
    Durka & Kowalski-Glikman CQG(10)-a1003 [SO(4,1) constrained, and Holst formulation of gravity];
    Escalante & Rubalcava-García IJGMP(12)-a1107 [Dirac constraint analysis].
  @ Related topics: Waelbroeck CMP(95)gq/93 [flat spacetimes];
    Cattaneo et al JMP(95),
    NPB(95) [knots];
    Freidel & Krasnov CQG(99)ht/98 [volume].
  @ Massive: Landim & Almeida PLB(01)ht/00 [topological mass, D dimensions];
    Landim PLB(02) [D dimensions];
    Bizdadea & Saliu EPJC(16)-a1511 [Abelian, gauge-invariant].
  @ With other fields: Leitgeb et al NPB(99)ht [2D with matter];
    Bizdadea et al IJMPA(06)-a0704 [3-form gauge fields];
    Fairbairn & Pérez PRD(08)-a0709 [extended matter].
  @ For Husain-Kuchař model:
    Barbero & Villaseñor PRD(01)gq/00;
    Montesinos & Velázquez AIP(09)-a0812.
  @ Other versions: Husain & Major NPB(97)gq,
    Momen PLB(97)ht/96 [bounded regions];
    Ikeda JHEP(00)ht,
    JHEP(01)ht [deformation];
    Diakonov & Petrov G&C(02)ht/01 [Yang-Mills and string theory];
    Blasi et al NPB(06) [non-commutative, 2D];
    Borowiec et al IJGMP(06) [covariant, Lagrangian];
    Cattaneo et al CMP(20)-a1701 [cellular BF theory].
And Gravity
  > s.a. first-order actions; 3D gravity;
  canonical general relativity, connection and
  other formulations; gravity theories;
  Simplicity Constraints.
  *  Idea: General relativity
    is not a topological theory, but one can write down its action as that of
    a BF theory (B ∧ F, with B = e ∧
    e) with an added term of the type *B ∧ F,
    with a coefficient that corresponds to the Immirzi parameter.
  *  Motivation: It is taken
    as a starting point for spin-foam formulations of quantum gravity.
  *  Plebański action:
    For complex general relativity one can write down a modified BF action,
S(A, B, φ) = ∫M (B ∧ F + \(1\over2\)b φabcd Bab ∧ Bcd) d4x .
  @ General references: Freidel & Speziale Sigma(12)-a1201 [rev];
    Cattaneo & Schiavina JMP(16)-a1509;
    Celada et al CQG(16)-a1610 [rev].
  @ Plebański action: Reisenberger CQG(99)gq/98 [complex general relativity];
    Buffenoir et al CQG(04) [Hamiltonian analysis];
    Ita HJ-a0804,
    HJ-a0901,
    a0911-proc,
    IJMPD(12)-a0705v4,
    MPLA(12)-a0710v4 [instanton representetation];
    Alexandrov CQG(12)-a1202 [degenerate sector, and its spin-foam quantization];
    González et al a1204 [gauge and spacetime connections].
  @ Modified Plebański action: in Maran gq/05 [SO(4, \(\mathbb C\)) theory];
    Krasnov CQG(08)gq/07;
    Krasnov & Shtanov CQG(08)-a0705;
    Krasnov CQG(09)-a0811 [without simplicity constraint];
    Ramírez & Rosales IJMPA(12)-a0910 [supergravity extension];
    Gielen & Oriti CQG(10)-a1004;
    Gielen JPCS(11)-a1011 [with linear constraints];
    Gonzalez et al PRD(18)-a1806
      [polynomial in the B field, (complex) general relativity and anti-self-dual gravity].
  @ With arbitrary Immirzi parameter: Holst PRD(96)gq/95 [for Barbero Hamiltonian];
    Capovilla et al CQG(01)gq;
    Montesinos & Velázquez PRD(10)-a1002 [and cosmological constant];
    Dupuis & Livine CQG(11)-a1006 [simplicity constraints and coherent intertwiners];
    Durka & Kowalski-Glikman PRD(11)-a1103 [Noether charges and AdS-Schwarzschild black-hole entropy];
    Montesinos & Velázquez Sigma(11)-a1111 [different forms],
    PRD(12)-a1112 [and matter fields];
    Celada & Montesinos CQG(12)-a1209 [Lorentz-covariant Hamiltonian analysis];
    Berra-Montiel et al CQG(19)-a1901 [polysymplectic formulation];
    Montesinos & Celada PRD(20)-a1912 [canonical analysis with no second-class constraints].
  @ With cosmological constant: Miković JPCS(06)gq/05 [as deformed SO(4,1) theory];
    de Gracia et al a1702 [Hamilton-Jacobi analysis].
  @ Related topics: Constantinidis et al JHEP(02)ht/01 [symmetries and gravity];
    Canfora NPB(05)ht [and large-N expansion];
    Miković Sigma(06)ht-proc [quantum gravity as broken phase of BF theory];
    Cuesta & Montesinos PRD(07);
    Bonzom CQG(09)-a0903 [and area-angle Regge calculus];
    Krasnov IJMPA(09)-a0907 [with potential term for B field];
    Mielke PLB(10) [spontaneously broken topological BF theory];
    Dupuis & Livine CQG(11)-a1104 [holomorphic simplicity constraints and spin-foam models];
    Oliveira a1801-PhD [BFCG theory, categorical generalization];
    Celada et al a2010,
    Montesinos et al GRG(21) [in n dimensions, canonical].
  > Related topics:
    see holography; spherical
    symmetry.
Quantized
  > s.a. 2D quantum gravity; Feynman Diagram;
  loop quantum gravity[BF state].
  * Idea: The transition amplitude
    for the 3D BF theory with cosmological constant is given by the Turaev-Viro
    state-sum invariant.
  @ General references: Cattaneo & Rossi CMP(01)m.QA/00 [n-dimensional, Batalin-Vilkovisky];
    Bonzom & Smerlak PRL(12)-a1201 ["cellular quantization" and spin-foam gravity];
    Escalante & Cavildo-Sánchez a1607 [Faddeev-Jackiw quantization].
  @ Loop quantum gravity approach:
    Bi & Gegenberg CQG(94)gq/93;
    Constantinidis et al CQG(12)-a1203 [2D, coupled to topological matter];
    Bonzom & Livine JMP(12);
    Bonzom et al PRD(14)-a1403 [SU(2) BF theory with a (negative) cosmological constant].
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 27 may 2021