|  Deformed Quantum Uncertainty Relations | 
In General
  > s.a. modified coherent states [thermal, minimal-length].
  @ General references: Sarris & Proto PhyA(07) [from metric phase space];
    Massar & Spindel PRL(08)-a0710 [for discrete Fourier transform];
    Eune & Kim MPLA(14)-a1309 [from constraints];
    Iorio & Pais a1901 [from Dirac fields in graphene].
  @ Related topics: Ozawa PRA(03)qp/02 [measurement disturbance],
    PLA(03)qp/02 [limitations];
    Slawny JMP(07) [position and length operators];
    Pedram PRD(12)-a1112 [approach to quantum mechanics];
    Kalogeropoulos AJSS-a1303 [and solvable Lie algebras];
    Moradpour et al a2012 [and Tsallis entropy].
Gravity-Motivated Generalized Forms > s.a. phenomenology of quantum
  uncertainties; spacetime geometry in quantum gravity [metric fluctuations].
  * Idea: In gravity, two scales
    that can be used to deform the standard uncertainty relations are the Planck
    length lP and the cosmological horizon
    length lh; With quantum-gravity
    effects, one tends to get larger uncertainties than in standard quantum mechanics,
    related by Δx Δp ≥ (\(\hbar\)/2) (1 + ...), while
    fixed, discrete spacetime tends to give smaller ones, related by Δx
    Δp ≥ (\(\hbar\)/2) (1 − ...).
  * Generalized Uncertainty Principle (GUP):
    A UV modification, motivated by the quantum-gravity idea of a smallest possible
    \(\Delta x \approx l_{\rm P}^~\); One proposed form is
Δxi Δpj \(\ge (\hbar\)/2) (1 + \(\alpha^2\, l_{\rm P}^{\,2}\) Δpi2 / \(\hbar\)2) δij .
* Extended Uncertainty Principle (EUP): An IR modification taking into account curved spacetime effects, motivated by physics in anti-de Sitter space,
Δxi Δpj ≥ (\(\hbar\)/2) (1 + β2 Δxi2 / lh2) δij ;
    One can also have both terms present, in an extended generalized
    uncertainty principle (EGUP).
  * Károlyházy uncertainty relation:
    If a device is used to measure a length l, there will be a minimum uncertainty
    in the measurement given by \((\delta l)^3 \sim \ell_{\rm P}^2\,l\).
  @ General references: Kempf et al PRD(95)ht/94;
    Kempf & Mangano PRD(97)ht/96 [regularization];
    Quesne & Tkachuk Sigma(07)qp/06 [2-parameter version];
    Brau & Buisseret PRD(06)ht [and gravitational quantum well];
    Balasubramanian et al AP(15)-a1404 [and operator self-adjointness];
    Tawfik & Diab IJMPD(14)-a1410,
    RPP(15)-a1509 [rev];
    Bruneton & Larena GRG(17)-a1602 [Hilbert space representations].
  @ Derivations:
    Bojowald & Kempf PRD(12)-a1112 [for systems with a discrete coordinate];
    Casadio a1310-proc [from a "horizon wave function"];
    Faizal et al PLB(17)-a1701 [from effective field theory];
    Kuzmichev & Kuzmichev a1911 [with Newtonian gravity].
  @ With maximal momentum:
    Nozari & Etemadi PRD(12)-a1205;
    Pedram PLB(12)-1110,
    PLB(12)-a1210 [higher-order];
    Etemadi & Nozari a1412;
    Lake Gal-a1712 [dark-energy modified];
    Lake et al CQG(19)-a1812 [from geometric superpositions];
    Petruzziello a2010 [and no minimal length].
  @ Phenomenology:
    Bosso PhD(17)-a1709;
    Casadio & Scardigli PLB-a2004
      [and Poisson brackets, equivalence principle];
    > s.a. specific applications.
  @ In DSR: 
    Cortés & Gamboa PRD(05)ht/04;
    Chung & Hassanabadi PLB(18)-a1807 [and consequences].
  @ And extra dimensions: Mu et al ChPL(11)-a0909;
    Köppel et al a1703-proc.
  @ And Lorentz invariance:
    Kim FdP(98)qp/97-proc;
    Sasakura PTP(99)ht,
    JHEP(00)ht;
    Molotkov qp/02 [for photons];
    Kim & Noz AIP(07)qp/06;
    Tkachuk a1310;
    Lambiase & Scardigli PRD(18)-a1709 [SME parameter \(\beta\)];
    Todorinov et al AP(19)-a1810 [relativistic generalization].
  @ In curved spaces: Golovnev & Prokhorov JPA(04)qp/03 [in curved spacetime];
    Bambi & Urban CQG(08)-a0709 [particle in de Sitter space];
    Park PLB(08)-a0709;
    Cooperstock & Dupre AP(13)-a0904 [in terms of spacetime energy-momentum];
    Mignemi MPLA(10)-a0909,
    Ghosh & Mignemi IJTP(11)-a0911 [(anti-)de Sitter space];
    Perivolaropoulos PRD(17)-a1704 [with maximum observable length];
    Dąbrowski & Wagner a2006 [EUP, arbitrary spatial curvature];
    Petruzziello & Wagner a2101.
  @ Other backgrounds:
    Marchiolli & Ruzzi a1106 [discrete phase space];
    Iorio et al a1910 [in 3D gravity, and BTZ black hole].
  @ Spacetime uncertainty relation: Burderi & Di Salvo PRD(16)-a1207-MG13
      [Δr Δt > G\(\hbar\)/c4];
    Burderi et al PRD(16)-a1603 [quantum clock];
    Bolotin et al a1604 [quantum clock, and the principle of maximum force];
    Singh a1910 [Károlyházy relation].
  @ Related topics: Lindner et al PLA(96) [particle number-phase];
    Hogan ap/07 [holographic uncertainty principle];
    Das & Pramanik PRD(12)-a1205 [and path integrals];
    Bosso PRD(18)-a1804 [Hamiltonian and Lagrangian classical and quantum theories];
    Lake et al a1912 [for angular momentum and spin];
    > s.a. Lifshitz Theories; Schwinger's
      Quantum Action Principle; wigner functions.
From Deformed Algebras
  > s.a. Commutation Relations; modified lorentz symmetry;
  modified quantum theory; poincaré group.
  * Idea: One can obtain modified
    uncertainty relations from a deformation of the Poincaré and/or Heisenberg
Δxi Δpj \(\ge {1\over2}|\langle[x_i, p_j]\rangle|\) .
* Examples: From the symmetry algebra of AdS one obtains the EUP above; In string theory one gets the modified commutation relations
[xi, pj] = i\(\hbar\)[(1 + β p2) δij + β' pi pj] .
  @ General references: Maggiore PLB(93)ht;
    Abdelkhalek et al PRD(16)-a1607;
    Faizal PLB(16)-a1605 [from supersymmetry breaking].
  @ In deformation quantization:
    Zhang PLA(99)ht/03;
    Przanowski & Turrubiates JPA(02)m.QA;
    Gerstenhaber JMP(07).
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 16 jan 2021