|  Non-Commutative Gauge Theories | 
In General
  > s.a. non-commutative field theories \ types of gauge theories.
  @ Reviews: Wess JPCS(06)ht;
    Blaschke et al Sigma(10)-a1004 [on flat Groenewold-Moyal spaces].
  @ General references:
    Dubois-Violette et al JMP(90),
    Chan & Tsou AP(90);
    Akman JPAA(97)qa/95 [Lagrangian quantization];
    Langmann APPB(96)ht/96;
    Carow-Watamura & Watamura CMP(00) [on fuzzy sphere];
    Terashima JHEP(00)ht [and ordinary gauge theory];
    Madore et al EPJC(00)ht;
    Morita ht/00;
    Bak et al PLB(01);
    Brace et al IJMPA(02)ht/01-in;
    Wess CMP(01) [non-abelian];
    Hu & Sant'Anna IJTP(03);
    Floratos & Iliopoulos PLB(06)ht/05;
    Behr PhD(05)ht [non-constant commutators];
    McCabe IJTP(06);
    de Goursac JPCS(08)-a0710 [effective action];
    Rosenbaum et al Sigma(08)-a0807 [spacetime diffeomorphisms];
    de Goursac PhD(09)-a0910;
    Weiß PhD(09)-a1003 [geometric, deformation quantization of principal fibre bundles];
    van Suijlekom a1110 [and higher-derivative gauge theories];
    Masson AIP(12)-a1201 [mathematical structures];
    Chandra a1301-PhD;
    Géré et al PRD(14)-a1312;
    Boeijink & van den Dungen JMP(14)-a1405 [on almost-commutative manifolds];
    Kupriyanov & Vitale JHEP(20)-a2004 [novel approach].
  @ Existence, no-go results: Saha et al ht/06-wd [not every gauge theory can be extended to non-commutative space];
    Arai et al PLB(08) [circumventing no-go theorem];
    Hanada a1604-proc [existsnce of a non-perturbative formulation].
  @ On a curved non-commutative spacetime:
    Behr & Sykora NPB(04);
    Burić et al JHEP(10)-a1003,
    PRD(12);
    Schenkel & Uhlemann Sigma(10)-a1003 [U(1) gauge theory].
  @ Hamiltonian / Lagrangian formulation: Kase et al PTP(99)ht/98,
    PTP(99) [Lagrangian];
    Cuesta et al ht/06 [non-commutative phase space];
    Amorim & Farias PRD(02)ht/01 [non-abelian, Hamiltonian];
    Banerjee PRD(03) [non-commutative E fields and consistency].
  @ Path-integral quantization: Habara PTP(06)ht; 
    Zobin qp/06.
  @ Lattice gauge theory: Balachandran et al JGP(98)hl/96;
    Ambjørn et al JHEP(00)ht;
    O'Connor & Ydri JHEP(06)hl [U(1), Monte Carlo].
  @ Monopoles / solitons: Baez et al CMP(00)ht/98;
    Gopakumar et al JHEP(00);
    Jiang ht/00;
    Nekrasov ht/00-ln.
  > Related topics:
    see BRST transformations; instantons;
    renormalization; Wilson Loop.
Electrodynamics, QED
  @ General references: Riad & Sheikh-Jabbari JHEP(00)ht [dipole moments];
    Kruglov EP(03)qp/02;
    Morita PTP(03)ht/02 [Lorentz-invariant];
    Berrino et al PRD(03);
    Gaete & Schmidt IJMPA(04)ht/03 [Coulomb's law];
    Kauffman IJTP(06)qp/05 [diagrammatic, including discrete];
    Carone & Kwee PRD(06)hp [Lorentz-invariant];
    Calmet EPJC(07)ht/06;
    Yang EPJC(09)-a0704 [as large-N gauge theory];
    Madore IJGMP(08) [and Schwinger's chiral action];
    Yang IJMPA(09) [and emergent gravity];
    Balachandran et al IJMPA(09) [on the Groenewold-Moyal plane];
    Jafari a0912;
    Burić et al PRD(11)-a1009 [chiral fermions];
    van den Dungen & van Suijlekom JNCG(13)-a1103;
    > s.a. modified electromagnetism.
  @ Vacuum birefringence: Abel et al JHEP(06);
    Maceda & Macías PLB(11).
  @ Other phenomenology: Chaichian et al PRL(01)ht/00 [H atom, Lamb shift];
    Fu & Sheng PRD(07)ht [corrections to muon pair production];
    Zahn PhD(06)-a0707 [dispersion relations];
    Ilderton et al Sigma(10)-a1003 [effects of strong background fields];
    Ghoderao et al MPLA(19)-a1806 [bound on non-commutativity scale];
    > s.a. photon phenomenology in quantum gravity.
 Different Theories > s.a. BF theory; GUTs;
  quantum constrained systems; topological field theories.
  * Standard model: In the
    non-commutative formulation of Connes and  Chamseddine, one of the three
    generations of fermions has to possess a massless neutrino; Although the
    theory is an essentially classical one, it predicts what is expected to
    be approximately the right value for the Higgs mass.
  @ Standard model: Kastler & Schücker TMP(92)ht/01;
    Sładkowski IJTP(96)ht/94;
    Brout NPPS(98)ht/97;
    Wulkenhaar ht/97;
    Martín et al PRP(98);
    Schücker LNP(05)ht/01,
    ht/03-en;
    Wohlgenannt ht/03-conf;
    Martinetti mp/03 [intro];
    Khoze & Levell JHEP(04);
    Barrett & Dawe Martins JMP(06),
    Dawe Martins JMP(06) [vacuum];
    Barrett JMP(07)ht/06 [Lorentzian];
    Connes JHEP(06)ht [with neutrino mixing];
    Chamseddine & Connes JGP(08)-a0706,
    PRL(07)-a0706 [explanation of standard model];
    Sakellariadou IJMPD(11)-a1008-fs;
    Farnsworth & Boyle NJP(14)-a1401,
    NJP(15)-a1408 [simpler reformulation, and non-associative geometry];
    Chamseddine et al JHEP(14)-a1411 [from higher-degree Heisenberg commutation relation];
    Martinetti a1503-proc [twisted spectral geometry];
    Brouder et al a1504
      [as an extension of the non-commutative algebra of forms];
    Boyle & Farnsworth JHEP-a1604 [new algebraic structure];
    Sakellariadou a1605-proc;
    Lizzi a1805-proc [rev];
    Devastato et al IJMPA(19)-a1906 [rev];
    Bochniak & Sitarz a2001 [without fermion doubling];
    Filaci et al a2008 [Twisted Standard Model].
  @ Standard-model extensions:
    Marculescu ht/05;
    Stephan PRD(09)-a0901;
    van den Broek & van Suijlekom JHEP(13)-a1211;
    Stephan a1305-proc;
    van den Broek a1409-PhD [MSSM].
  @ Unified theories: 
    Lizzi et al MPLA(96);
    Chamseddine & Connes FdP(10)-a1004 [all interactions, including gravity];
    Sakellariadou JPCS(15)-a1503;
    Nguyen a1510-conf.
  @ Other theories: Lizzi et al MPLA(98) [mirror fermions];
    Das & Rey NPB(00)ht [open Wilson lines];
    Saraikin JETP(00)ht [Morita equivalence];
    Okawa & Ooguri NPB(01) [coupling to gravity];
    Mesref NJP(03)ht/02 [map ordinary → deformed gauge theory];
    Krykhtin G&C(03) [Yang-Mills + matter];
    Slavnov PLB(03) [U(n)];
    Caporaso et al ht/04-fs [topologically massive];
    Banerjee et al PRD(04)ht [and Lorentz symmetry];
    Ivanov & Zupnik TMP(05) [supersymmetric gauge theories];
    Stern PRD(08) [particlelike solutions];
    Armoni PLB(11) [2D U(N) theories];
    Ahmadiniaz et al JHEP(19)-a1811 [U(N) Yang-Mills theory];
    Sakellariadou & Sitarz PLB(19)-a1903 [Fermionic spectral action and neutrino masses];
    > s.a. chern-simons theory; higgs mechanism;
    non-commutative gravity.
  > Related topics:
    see causality and causality violations;
    spin networks [gauge networks]; theta sectors.
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 16 aug 2020