|  Lagrangian Systems | 
Particle Dynamics and Other Systems > s.a. classical particles;
  relativistic particles; spinning particles;
  parametrized systems.
  @ General references: Barbero & Villaseñor PRD(02)ht [quadratic, Diff-invariant];
    Scholle PRS(04) [continuum theories];
    Castrillón López et al a0711 [interacting systems, "concatenating" variational principles];
    Bernard & Contreras AM(08) [generic property of families of Lagrangian systems].
  @ On Lie groups: Crampin & Mestdag JLT(08)-a0801 [invariant Lagrangians];
    Lucas a1111 [finite-dimensional, pedagogical].
  > Other systems: see constrained
    systems; graph theory; higher-order lagrangians [including
    non-local systems]; monopoles; morse theory [on spaces of braids];
    Nambu Mechanics.
Field Theories [with metric signature (−, +, +, +)]
  * Maxwell field:
\(\cal L\) = −\(1\over4\)|g|1/2 gac gbd Fab Fcd = −|g|1/2 gac gbd ∇[a Ab] ∇[c Ad] .
    (Or multiply by 1/4π.) With matter, add a term c−1
    Aa J a;
    > s.a. Proca Theory; Stückelberg Model;
    torsion in physics.
  * Weak interactions:
    For the original theory and the one with vector bosons, respectively,
\(\cal L\) = \(1\over\sqrt2\)G J a(x) Ja†(x) , \(\cal L\) = g J a(x) Wa(x) + h.c. ,
    where J a
    = la
    + ha
    and 2−1/2 G
    = g2 /
    mW2.
  * Dirac field:
    With coupling to a gauge field (check conventions; could add a non-linear,
    (ψ*ψ)2 term)
\(\cal L\) = ψ* (ic\(\hbar\) γa Da − mc2) ψ + \(\cal L\)YM .
* Spin-1 field: In the massive case, the Proca Lagrangian [@ Proca CRAS(36)]
\(\cal L\) = Ba†(x) [ηab(\(\square\) + m2) − ∇a∇b] Bb(x) .
* Spin-2 field:
\(\cal L\) = \(1\over2\)(∇ahbc) (∇a hbc) − (∇a hab) (∇c hcb) .
  @ Electrodynamics:
    Bracken IJTP(05);
    Bogolubov & Prykarpatsky UJP(09)-a0909,
    FP(10) [and Hamiltonian, quantization];
    Saldanha BJP(15)-a1509 [alternative];
    Vollick a2101
      [in terms of electric and magnetic fields, without potentials].
  @ Other field theories: Szczyrba APM(76);
    Giachetta et al 97;
    Hájíček & Kijowski PRD(98)gq/97 [with discontinuities];
    Boersma PRD(99)gq/00 [and boundary terms];
    Echeverría-Enríquez et al IJMMS(02)mp/01;
    de León et al mp/02,
    mp/02;
    András gq/04 [coupled to general relativity];
    Gravanis & Willison JMP(09)-a0901 [distributional fields];
    Cattaneo et al a1207 [with boundaries];
    Neiman PRL(13)-a1310
      [imaginary part, and entanglement];
    > s.a. dilaton; fluids [dissipative]
      and perfect fluids; gauge theory;
      klein-gordon fields; yang-mills theory.
  > Gravitational theories:
    see action for general relativity; higher-order theories;
    newtonian gravity; scalar-tensor gravity.
Non-Lagrangian Systems > s.a. noether theorem
  [generalization]; path integrals [Lagrange structures, Peierls brackets].
  * Example: A charged particle in the field of magnetic monopole.
  @ References: Nucci & Leach PS(11) [systems without a Lagrangian].
Other Generalized Theories > s.a. deformation quantization;
  thermodynamics; dissipative systems
  and variational principles [including non-conservative].
  * Non-commutative field theory:
    For a scalar φ3 theory,
    if * is the non-commutative star-product,
\(\cal L\) = −\(1\over2\)|g|1/2 [gab ∂aφ ∂bφ + (m2φ2 + \(1\over3\)g φ *φ *φ)] .
  @ Singular Lagrangians: Gràcia & Pons JPA(01)mp/00;
    Pugliese & Vinogradov JGP(00);
    Gitman & Tyutin NPB(02)ht [Hamiltonian];
    Román-Roy mp/06-conf;
    Duplij JKNU-a0909 [non-linear Hamiltonian formalism];
    Langerock & Castrillón IJGMP(10)-a1007 [Routh reduction procedure];
    Sardanashvily a1206 [Grassmann-graded Lagrangian theory];
    Duplij IJGMP(15)-a1308 [partial Hamiltonian formalism];
    > s.a. hamilton-jacobi theory;
      statistical-mechanical systems [inequivalent Lagrangians].
  @ Non-holonomic systems:
    Vankerschaver et al RPMP(05) [geometric];
    Anahory et al a2003 [discrete, exact mechanics].
  @ Discrete systems: Baez & Gilliam LMP(94);
    Caterina & Boghosian PhyA(08) [no-go theorem for least-action principle];
    Elze PRA(14)-a1312 [cellular automata];
    Höhn JMP(14)-a1407 [constraints and degrees of freedom];
    Gubbiotti a1910 [fourth-order difference equations].
  @ With fractional derivatives: Dreisigmeyer & Young JPA(03) [non-conservative];
    Baleanu & Trujillo ND-a0708 [including exact solutions];
    Golmankhaneh et al IJTP(10),
    IJTP(12) [Hamiltonian structure].
  @ Other systems: Hata PRD(94)ht/93 [theories/actions as variables];
    Marolf PLB(95)gq/94 [partial system];
    Soroka PAN(96)ht/95 [Grassmann-odd];
    Fiziev & Kleinert gq/96 [action principle in spaces with torsion];
    Neiman a1212 [with null boundary data];
    Bosso a1804 [theories with minimal length];
    > s.a. differential equations.
  @ Other backgrounds: Marolf CQG(94)gq/93 [degenerate metric];
    Chamseddine & Connes CMP(97)ht/96,
    PRL(96)ht [non-commutative space].
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 14 feb 2021