|  Gauge Theories of the Yang-Mills Type | 
In General
  > s.a. gauge theory; Wilson Loop.
  * Idea: Gauge theories with
    a specific form for the action/equations of motion; The original type of
    gauge theory, and still the most widely used one.
  * Evidence: The first direct
    evidence came with the 1973 discovery of flavor-changing neutral currents
    at CERN.
Classical Dynamics
  > s.a. Faddeev-Niemi Equations; gauge theory
  [including loop-based variables]; lattice gauge theory; twistors.
  * Action: In terms of the curvature
    Fab of the Lie algebra-valued
    connection Aa ("tr"
    uses the metric on G),
S[A] = \(1\over2\)∫M dv gab gmn tr(Fam Fbn) = # ∫M tr(F ∧ *F).
* Field equations: They are the source equations, and
\(DF:= {\rm d}F + [A, F] = 0\;,\qquad D^*F = J\) ;
    the first one is the Bianchi identity, and the second is conformally invariant
    (masslessness; J is the source current).
  * Matter fields: The coupling
    of the gauge field to matter is usually taken to be minimal; The free term
    "FF" is added to the matter Lagrangian, and all derivatives
    ∇ of matter fields are replaced by gauge-covariant derivatives D.
  @ General references: Boozer AJP(11)sep [coupled particle-field system, 2D].
  @ Action: Aldrovandi & Pereira RPMP(88) [existence of Lagrangians]; & Sengupta;
    Fine JMP(00)m.DG [lower bound on a Riemann surface];
    Tolksdorf JGP(07) [form linear in the curvature];
    Escalante & Berra IJPAM-a1301 [as a constrained BF-like theory];
    Brandt et al AP(19)-a1810 [first-order, in background field].
Hamiltonian Formulation and Evolution
  > s.a. hamiltonian systems; solutions
  [singularities]; types of yang-mills theories [1+1 dimensions].
  * Hamiltonian / Energy:
H(A, E) = ∫ d3x tr(E2 + B2) = # ∫ dv gab gmn tr(Fam Fbn) .
  @ General references: Cronstrom ht/98,
    ht/99;
    Śniatycki RPMP(99);
    Ozaki IJMPA(01)ht/00 [QCD];
    Vignolo et al IJGMP(05)mp;
    Reinhardt et al a0807-conf,
    PoS-a0911 [Coulomb gauge];
    Gerhardt CMP(10)-a0908 [energy gap];
    Prokhorov & Shabanov 11;
    Balachandran et al MPLA(17)-a1704 [equations of motion  as constraints].
  @ Gauge-invariant variables:
    Lunev TMP(93) [and Yang-Mills-Higgs];
    Freidel ht/06;
    Guo AP(16)-a1410 [metric-like variables].
  @ Cauchy problem: Segal JFA(79);
    Eardley & Moncrief CMP(82),
    CMP(82).
  @ With matter: Lusanna IJMPA(95),
    IJMPA(95) [fermions].
  @ Structure of configuration space:
    Fuchs et al NPB(94);
    Fuchs ht/95-conf;
    Rajeev & Rossi JMP(96) [on a cylinder];
    Pause & Heinzl NPB(98)ht;
    Nair & Yelnikov NPB(04)ht/03 [measure];
    Agarwal & Nair NPB(09) [on \(\mathbb R\) × S2].
Other Issues and Effects > s.a. chaos in field theories;
  gauge theory solutions; QCD [confinement].
  * Gauge choice:
    See Axial, Coulomb, Lorenz gauge.
  * Mass generation:
    A possible mechanism is through a topological coupling of vector
    and tensor fields; After integrating over the tensor degrees of
    freedom, one arrives at an effective massive theory that is gauge
    invariant but non-local.
  @ Mass generation:
    Flores-Baez et al IJMPA(06) [without Higgs];
    Sorella AP(06)-a0704;
    Savvidy PLB(10)-a1001 [topological];
    Frasca a1007 [and supersymmetry].
  @ Related topics: DeGrand et al NPB(98) [SU(2), topological susceptibility];
    Edwards et al PLB(98) [fractional topological charge];
    Gambini et al PRD(99)gq/98 [Immirzi-like parameter];
    Bizoń & Tabor PRD(01) [singularities and critical phenomena];
    Fischer et al AP(09) [infrared behavior, Landau gauge].
  > Other effects: see higgs mechanism;
    Memory Effects; thermodynamics;
    theta sectors.
  > Related topics: see boundaries;
    duality; entropy bounds;
    Makeenko-Migdal Equation.
References
  > s.a. gauge theory / BRST; history
  of physics; lattice gauge theory; QCD [including finite-temperature
  theory]; string phenomenology.
  @ Articles, I: 't Hooft SA(80)jun;
    Wilczek PW(89)feb;
    Barlow EJP(90).
  @ Books, II: Aitchison & Hey 12.
  @ Books and reviews: Abers & Lee PRP(73);
    Coleman in(75);
    Iliopoulos pr(76);
    Mayer 77;
    Yang NYAS(77);
    O'Raifeartaigh RPP(79);
    Bleecker 81;
    Gaillard & Stora ed-83;
    Chaichian & Nelipa 84;
    Cheng & Li 84;
    Bailin & Love 86;
    O'Raifeartaigh 86;
    Carmeli et al 89;
    Mills AJP(89)jun;
    Huang 92;
    Cheng & Li 00 [problems];
    Frampton 00;
    Pokorski 00;
    't Hooft ed-05;
    Quigg 13.
  @ As perturbed topological field theory: Cattaneo et al CMP(98) [deformed BF theory];
    Kondo PRD(98)ht,
    IJMPA(01);
    Rovelli & Speziale GRG(07)gq/05 [equivalent to perturbed abelian theory].
  @ Geometrical approaches: 
    Cianci et al JPA(03),
    add JPA(04);
    Catren SHPMP(08);
    Weatherall a1411 [and general relativity].
  @ Reformulations: Faddeev & Niemi PRL(99)ht/98 [partially dual variables];
    Majumdar & Sharatchandra PLB(00)ht [as ADM-type theory of metrics];
    Sevostyanov mp/04-wd [as integrable, near ground state];
    Carta et al AdP(06)ht/05 [Koopman-von Neumann formulation];
    Gorsky & Rosly JHEP(06)ht/05 [light-cone formalism];
    Catren & Devoto CMP(08)-a0710 [extended connection];
    Maraner & Pachos PLA(09) [from fermionic lattice models];
    Ferreira & Luchini PRD(12)-a1205 [integral formulation];
    Mitra & Sharatchandra AHEP-a1307 [dreibein and metric as prepotential];
    Koenigstein et al IJMPE(16)-a1601 [from canonical transformations];
    > s.a. gauge theory [variables]; Operad;
      sheaf theory.
Other Topics
  > s.a. connections; solutions; types
  of yang-mills theories [including curved and higher-dimensional spacetimes, generalizations].
  @ General references:
    Śniatycki RPMP(88) [charges];
    Wald in(88);
    Henneaux & Teitelboim PLB(90);
    Henneaux et al NPB(90);
    Śniatycki CMP(91);
    Shabanov PLB(01)ht [infrared limit];
    Capri et al PRD(05)ht [non-local mass operator];
    Marateck a0712 [rederivation].
  @ Gauge-invariant calculations: Arnone et al PRD(03)ht/02;
    Rosten JPA(06)ht/05;
    > s.a. renormalization.
  @ Symmetries: Marchildon JGTP(95)mp/03 [Lie symmetries];
    Torre JMP(95);
    Pons et al JMP(00)gq/99 [Einstein-Yang-Mills theory];
    Pohjanpelto DG&A(04) [local, semi-simple, classification];
    Strominger JHEP(14)-a1308 [asymptotic symmetries at future null infinity];
    Tanzi & Giulini JHEP(20)-a2006 [asymptotic];
    > s.a. conservation laws; solutions.
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 4 apr 2021