|  Solutions of Gauge Theories | 
Spherically Symmetric
  > s.a. quantum gauge theory; spherical
  symmetry in general relativity; yang-mills gauge theory.
  @ General references:
    Benguria et al NPB(77);
    Schütte AP(92);
    Bartnik JMP(97) [SU(n)];
    Borasoy & Lee PLB(99)ht;
    Brihaye et al PRD(04)ht [Yang-Mills in 4+n dimensions];
    Maison CMP(05)gq/04 [Yang-Mills-dilaton, static];
    Balasin et al GRG(05)gq/04 [defs, standard model + gravity];
    Lux & Johannsen a0802 [magnetic monopole on de Sitter background].
  @ Singularities:
    Linhart PhD(99)mp/01;
    Bizoń & Tabor PRD(01)mp;
    Bizoń APPB(02)mp.
  @ Related topics: Comay AJP(02)jul [electromagnetism, no spherical radiation];
    > s.a. Birkhoff Theorem [in Einstein-Yang-Mills theory].
Other Solutions of Yang-Mills Theories > s.a. instantons;
  self-dual solutions; solitons.
  * Sphalerons: Static, but
    unstable, solutions of Yang-Mills theory coupled to some other field which
    acts as an attractive force, e.g. Higgs or gravity; They mediate between
    different winding numbers and are used for baryogenesis.
  * Merons: Singular, globally
    non-trivial gauge field configurations with half-integer topological charge
    (instantons have integer topological charge).
  @ Vacuum: Selivanov & Smilga PRD(01) [on T3];
    > s.a. theta sectors; vacuum.
  @ Monopoles: Teh et al IJMPA(10)-a1002 [massive SU(2) Yang-Mills-Higgs theory];
    > s.a. monopoles.
  @ Sphalerons: Kunz & Brihaye PLB(89) [in Weinberg-Salam theory];
    Gal'tsov & Volkov PLB(91) [in Einstein-Yang-Mills];
    Gibbons & Steif PLB(94)ht/93,
    PLB(95)hp/94;
    Straumann & co;
    Brihaye & Desoil MPLA(00) [gravitating];
    Millward & Hirschmann PRD(03)gq/02 [Einstein-Yang-Mills-Higgs, collapse].
  @ In Schwarzschild spacetime: Brihaye et al JMP(00)ht [and de Sitter space];
    Tekin PRD(02)ht [Euclidean];
    Bizoń et al CQG(07)-a0704 [late time tails];
    Bizoń et al CQG(10) [stability, saddle-point dynamics].
  @ Homogeneous: Henneaux JMP(82) [and isotropic];
    Gotay JGP(89) [reduced phase space].
  @ Other symmetries:
    Forgács & Manton CMP(80);
    Hannibal ht/99,
    Rabinowitch TMP(06) [axisymmetric].
  @ With other matter:
    Kleihaus et al PLB(06) [+ dilaton, particle-like];
    Isobe DG&A(10)
      [+ Dirac field, regularity and energy quantization].
  @ Related topics:
    Samuel PRL(96) [merons];
    Sarioglu PRD(02) [Liénard-Wiechert potentials];
    Ilderton et al AP(10)-a0907 [minimal-energy states, charge creation and annihilation];
    Albert a1108 [SU(2) Yang-Mills theory];
    Shirokov AACA(18)-a1709 [covariantly constant solutions];
    Nian & Qian a1901 [with non-trivial topology];
    Kuchynka CQG(19)-a1902 [with vanishing scalar invariants].
  > Cosmological:
    see cosmological models in general relativity.
  >  In other curved spacetimes:
    see singularities.
References > s.a. yang-mills gauge theory [space of solutions].
  @ General: Actor RMP(79);
    Izergin et al TMP(79);
    Sibner & Uhlenbeck pr(89);
    Bor & Montgomery in(90);
    Klainerman & Machedon AM(95);
    Koshkarov TMP(95) [non-vacuum, non-self-dual];
    Singleton TMP(98)ht/99 [from general relativity].
  @ Solutions of the (Gauss law) constraint:
    Majumdar & Sharatchandra PRD(98)ht [decomposition];
    Śniatycki CMP(99) [Yang-Mills-Dirac, solution set];
    Salmela JMP(03)ht/02 [SU(3)].
  @ Moduli space of solutions: Donaldson JDG(87);
    Groisser & Parker JDG(89).
  @ Distance between configurations:
    Groisser & Murray dg/96 [self-dual, information metric];
    Orland ht/96.
  @ Solutions of higher-spin theories:
    Sezgin & Sundell NPB(07) [4D];
    Vasiliev et al TMP(07) [3D, BTZ black hole].
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 13 jan 2020