|  Finite-Dimensional and Discrete Quantum Systems | 
Qubits
  > s.a. Rebits; decoherence.
  * Idea: A qubit is a
    2-state system, a quantum system with a 2D Hilbert space; The term was
    coined by Benjamin Schumacher in 1992, and has become the conceptual
    tool needed to make progress in quantum computing [@ history,
    sn(17)jul].
  * Properties:
    Density matrices for 1 qubit are in 1-1 correspondence with points
    of the 3D solid ball, the Bloch sphere.
  * Example: A theoretical
    example is the two-level atom, and in practice trapped
    43Ca+ ions seem to work well (2014).
  @ One qubit: Urbantke AJP(91)jun [phases and holonomy];
    Slater qp/97 [statistical thermodynamics],
    qp/00 [and information theory];
    Ralph et al FP(98) [solution];
    Sassaroli AJP(99)oct [neutrino oscillations];
    Bagrov et al JPA(01)qp [V(t)];
    Barata & Cortez PLA(02)qp [periodic driving];
    An et al JOB(04)qp/05 [coupled to squeezed vacuum field];
    Maioli & Sacchetti JSP(05) [+ stochastic perturbation];
    Gemmer & Michel PhyE(05)qp [+ environment];
    Kato et al qp/06-conf [Holevo capacity from Voronoi diagrams];
    Calmet & Calmet PLA(12)-a1201 [in quantum field theory];
    Kiktenko & Korotaev PS(13) [coupled to a mixed quantum field state]; 
    Gómez et al a1604 [a qubit is more than a quantum coin];
    Liss et al a1812 [topological order];
    Amao & Castillo a2001 [geometric algebra approach];
    Brandenburger et al a2010 [entropic uncertainty principle];
    > s.a. particles; relativistic quantum mechanics.
  @ One qubit, in curved spacetime:
    Palmer et al AP(12);
    Viennot & Moro a1609 [adiabatic transport].
  @ Two qubits: Kummer IJTP(01);
    Abouraddy et al PRA(01) [decomposition and entanglement];
    Avron et al JMP(07);
    Güngördü et al PRA(12)-a1205 [dynamical invariants of two-level systems];
    Santos & Semião PRA(14)-a1311 [+ environment, master equation];
    > s.a. composite systems;
      examples of entanglement.
  @ N qubits: Wootters qp/03-conf [generalized Wigner function];
    Rigetti et al QIP(04)qp/03 [and information];
    Klimov et al JPA(12)-a1007 [phase space];
    Coecke & Duncan NJP(11) [graphical calculus];
    Giorgi et al PRL(11)-a1108 [three qubits, quantum and classical correlations];
    Li et al PRA(14)-a1406 [classifying multi-qubit quantum states];
    Rau a2103 [symmetries and geometries].
  @ Realizations: Kim Phy(14);
    > s.a. quantum computing.
Other Types and General Discrete Systems
  > s.a. Clifford Operators; Discrete Models;
  Ehrenfest Theorem; wigner functions.
  * Qutrits: A qutrit
    is a three-state quantum system; For example, a single photon passing
    through a system of three slits, a "Young-type" qutrit.
  * Qudits: A qudit is
    a quantum system with d-dimensional Hilbert space.
  * Spin-J system:
    In the Majorana representation, a state of a spin-J system can
    be seen as a set of 2J points on the Bloch sphere.
  @ General references:
    Gudder FP(06) [and finite group theory];
    Hassan & Joag JPA(07) [combinatorial approach];
    Lenz & Veselić MZ(09)-a0709 [discrete Hamiltonians].
  @ Relationship with continuum ones:
    Ruzzi & Galetti JPA(00);
    Ruzzi JPA(02)qp/01,
    & Galetti JPA(02);
    Barker JPA(01),
    JMP(01) [continuum limits];
    Brukner et al PRA(03)qp/02;
    Kornyak in(09)-a0906 [gauge invariance and continuum limit];
    't Hooft FP(14).
  @ Three-level: Sánchez JPA(94);
    Slater JGP(01)qp/00 [Bures geometry];
    Rau & Zhao PRA(05)qp [complete treatment];
    Chruściński & Wudarski OSID(11)-a1105,
    Chruściński & Sarbicki OSID(13)-a1108 [entanglement witnesses];
    Jarvis JPA(14)-a1312 [mixed two-qutrit system].
  @ One spin: Bruno PRL(12)-a1204
    + Niu Phy(12)jun
      [spin-J system, Majorana's stellar representation];
    > s.a. quantum spin models [more spins];
      types of quantum states.
  @ Other discrete systems: de la Torre & Goyeneche AJP(03)jan-qp/02;
    Kornyak PPN(13)-a1208;
    Planat IJGMP(11) [four and eight-level systems];
    Domenech et al RPMP(11) [two-valued states over orthomodular lattices];
    Vourdas JMP(12)
      [partial order and T0 topology];
    Hanson et al JPA(14) [finite-field frameworks];
    van Wonderen & Suttorp a1808 [a thermal bath];
    > s.a. cellular automaton; classical systems;
      graph theory; modified quantum mechanics
      [discrete underlying space].
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 29 mar 2021