|  Open Quantum Systems | 
In General > s.a. deformation quantization;
  path integrals; quantum systems;
  modified quantum theory [non-Hamiltonian systems].
  * Goal: Provide conceptual and theoretical
    tools for the description of the reduced dynamics of a system interacting with an external
    environment.
  * Idea: They are usually described by
    mixed states of the type ρ(t) = trbath
    |Ψwhole\(\rangle\)\(\langle\)Ψwhole|, and linear quantum state diffusion (LQSD) stochastic
    Schrödinger equations; The interaction with the environment can lead to decoherence.
  * Markovian systems: In 1992 the idea was
    introduced that a Markovian open quantum system, such as a laser-driven atom, evolving
    deterministically as a mixed state because of coupling to its environment, could be fruitfully
    modelled as a stochastically evolving pure state, e.g., using quantum state diffusion.
  * Non-Markovian systems: While in a
    Markovian process an open system irretrievably loses information to its surroundings,
    non-Markovian processes feature a flow of information from the environment back to
    the open system, which implies the presence of memory effects as key property.
  @ Books and reviews:
    Klimontovich PS(00);
    Breuer & Petruccione 02;
    Rotter & Bird RPP(15)-a1507;
    Lidar a1902-ln;
    Vacchini a1907.
  @ General references: Isar et al IJMPE(94)qp/04;
    Calzetta et al PhyA(03)qp/00 [stochastic description];
    Gambetta & Wiseman PRA(01)qp;
    Štelmachovič & Bužek PRA(01)qp [entangled with the environment];
    Okołowicz et al PRP(03);
    Ollivier et al PRL(04)qp/03,
    PRA(05)qp/04 [environment and objective properties];
    Nicolosi OSID(05)qp;
    Jordan et al PRA(06)qp/05 [Schrödinger picture];
    Vol PRA(06)qp/05 [semiclassical quantization];
    Bodor & Diósi PRA(06) [conserved current];
    Crooks PRA(08)-a0706 [time reversal of a quantum operation];
    Pérez PRA(09) [Hilbert-space average method];
    Vogl et al PRA(10)-a0908 [relaxation towards the ground state];
    Bolivar AP(12) [dynamical-quantization approach];
    Triana a1508-MS [at low temperatures];
    Wiseman JPA(16)-a1609 [Gisin and Percival's quantum state diffusion];
    Kheirandish a1903,
    Karve & Loganayagam a2011 [Heisenberg picture];
    > s.a. types of quantum field theories.
  @ States:
    Klimontovich PS(98) [information];
    Isar RJP(98)qp/06 [pure states];
    Gardas & Puchała JPA(11)-a1006 [stationary states];
    Goldstein et al CMP(16)-a1104 [conditional wave function];
    Iles-Smith et al PRA(14)-a1311 [non-canonical equilibrium states];
    Eleuch & Rotter a1511 [interaction between states via the environment];
    Macieszczak et al PRL(16)-a1512 [theory of metastability];
    Amato et al PRA(19)-a1903 [microscopic modeling];
    > s.a. generalized coherent states.
  @ Phase transitions: Nesterov & Ovchinnikov PRE(08)-a0806 [and geometric phases];
    Jo et al a2004 [non-equilibrium, neural network approach].
  @ Non-Markovian systems: Strunz et al PRL(99) [stochastic Schrödinger equation];
    Breuer LNP-a0707;
    Fischer & Breuer PRA(07)-a0708 [spin + spin-bath];
    Rodríguez-Rosario & Sudarshan a0803;
    Piilo et al PRL(08),
    PRA(09)-a0902 [in terms of quantum jumps];
    Emary PRA(08) [in non-equilibrium environment];
    Breuer et al PRL(09)-a0908,
    Rivas et al PRL(10)-a0911,
    Laine et al PRA(10) [degree of non-Markovian behavior of quantum evolution];
    Chruściński et al PRA(10) [long-time memory];
    Fleming & Hu AP(12) [stochastic equations and their perturbative solutions];
    Breuer JPB(12)-a1206;
    De Santis et al a1903 [witnessing non-Markovian dynamics];
    Vacchini a1907-in [overview];
    Li et al EPL(19)-a2001 [meaning].
  @ Related topics: Xu et al PRE(14)-a1403 [back-action on the bath, and non-canonical statistics];
    Jordan a1408,
    Jordan & Seo a1408 [symmetries].
  > Examples: see random walk.
Dynamics
  > s.a. effects [decay]; entanglement;
  networks [neural networks]; wigner function.
  @ General references: Mensky PLA(03)qp/02 [evolution as measurement];
    Mohseni & Lidar PRL(06)qp;
    Kuzovlev a0903 [Schrödinger equation];
    Attal & Pellegrini a1004 [thermal environment, stochastic master equation];
    Chruściński & Kossakowski a1006;
    Rivas & Huelga 11-a1104 [introduction];
    Monnai JPA(12) [microscopic reversibility];
    Gessner & Breuer PRE(13)-a1301 [dynamics of complex open quantum systems];
    Cubitt et al CMP(15)-a1303 [local quantum dissipative systems, stability];
    Giorgi et al PRA(05)-a1305 [2 spins interacting via an environment, spontaneous synchronization];
    Mori PRA(14)-a1310 [non-Markovian corrections];
    Gough et al Dokl(14)-a1403 [methods for describing the dynamics];
    Overbeck & Weimer PRA(16)-a1510 [many-body systems];
    Maziero RBEF(16)-a1510
      [Kraus representation, and two-level atom interacting with the electromagnetic vacuum];
    Pigeon & Xuereb JSM(16)-a1602 [thermodynamics of trajectories];
    Reimer et al JChemP(19)-a1903 [five approaches];
    Alba & Carollo a2002 [spreading of correlations];
    Merkli a2105,
    a2105.
  @ Hamiltonian: Huang et al PRA(08)-a0810 [effective Hamiltonian approach];
    Rotter JPA(09) [non-Hermitian Hamiltonian operator];
    Lucia a1101 [thermodynamic Hamiltonian];
    Reiter & Sørensen PRA(12)-a1112 [effective operator formalism];
    Maksimov et al a1501 [effective non-Hermitian Hamiltonian];
    Layden et al PRA(16)-a1506 [emergent unitarity].
  @ Decoherence: Dugić & Jeknić IJTP(06)qp/99;
    Monteoliva & Paz PRA(01)qp [classically chaotic];
    Alicki qp/02,
    et al JPA(04)qp/03;
    Pepe et al PSSB(12)-a1110 [and energy dissipation];
    Bellomo et al a1206 [quantum-to-classical limit];
    Vacchini FNL(16)-a1605 [and noise].
  @ With classical environment:
    Kapral a1611 [rev, Liouville dynamics].
  @ Entropy production: Yu PLA(08) [and environment];
    Deffner & Lutz PRL(11)-a1103 [non-equilibrium].
  @ Evolution speed limits:
    del Campo et al PRL(13);
    Taddei PhD(14)-a1407;
    Uzdin & Kosloff EPL(16)-a1607 [rate of purity change];
    Funo et al NJP(19)-a1810.
  @ Fluctuation-dissipation theorem:
    Campisi et al PRL(09)
    + Ritort Phy(09);
    Fleming et al PRE(13)-a1012;
    Kawamoto & Hatano PRE(11)-a1105;
    Hsiang & Hu a2007 [in non-equilibrium steady state].
  > Related topics: see Anderson
    Localization; arrow of time [irreversibility]; geometric
    phase; lorentz transformations; noether's theorem.
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 4 may 2021