|  Types of Quantum States | 
In General
  > s.a. quantum states / complexity
  [complexity measures]; entanglement; mixed states;
  pilot-wave theory; schrödinger equation.
  $ Pure states: A state s is pure
    if there are no two distinct states s1 and
    s2 and positive c1
    and c2 such that s
    = c1s1
    + c2s2.
  $ Separable states: A pure state
    ψ of a quantum system is separable if there is a choice of n
    subsystems such that ψ can be expressed as a tensor product
|ψ\(\rangle\) = |ψ1\(\rangle\)(1) ⊗ |ψ2\(\rangle\)(2) ⊗ ... ⊗ |ψn\(\rangle\)(n) ;
A mixed state ρ of a system is separable if there is a choice of n subsystems auch that ρ is a convex combination of product states (not entangled),
ρ = ∑k ωk ρ(1)k ⊗ ρ(2)k ... ⊗ ρ(n)k , where ∑k ωk = 1 .
  * Schrödinger cat states:
    Superpositions of well-separated coherent states.
  * Passive states: States from
    which no system energy can be extracted by any cyclic (unitary) process; For
    example, Gibbs states of all temperatures.
  @ Separable states: Peres PRL(96)qp [necessary condition];
    Sanpera et al qp/97 [characterization];
    Życzkowski et al PRA(98) [volume];
    Majewski OSID(99)qp/97 [rigorous description];
    Lockhart et al QIC(02)qp/00 [product states];
    Shi & Du qp/01 [boundary];
    Wu & Anandan PLA(02),
    Rudolph PLA(04) [criteria];
    Albeverio et al PRA(03)qp [reduction criterion];
    Wu PLA(04) [as convex sum];
    Timpson & Brown IJQI(05)qp/04 [proper vs improper];
    Raggio JPA(06)qp/05 [spectral conditions];
    Khasin et al PRA(07)qp [negativity as measure of non-separability];
    Li & Luo PRA(08) [intrinsic characterization];
    Jakubczyk & Pietrzkowski RPMP(09) [integral representations];
    Harrow & Montanaro FOCS(10)-a1001 [test for product states];
    Chen et al a1204 [product states];
    Pandya et al PRA(20)-a1811 [bound on distance between a state and the closest separable state];
    Hobson a1903 [interpretation of product states].
  @ Schrödinger cat states: Jeong & Ralph qp/05-ch [application].
  @ Gravitational cat states: Anastopoulos & Hu CQG(15)-a1504;
    Derakhshani et al JPCS(16)-a1603 [gravitational, probes];
    Derakhshani a1609 [and collapse];
    Anastopoulos & Hu a2007 [quantum superpositions].
Unstable States > s.a. quantum systems [unstable];
  resonance; state evolution [decay].
  * Idea: Unstable/decaying
    states can be associated with resonances (Gamow vectors), and described
    by a Rigged Hilbert space.
  @ General references:
    Ordóñez et al PRA(01) [dressed];
    Chruściński mp/02 [Wigner functions for damped systems];
    Castagnino et al PLA(01)qp/02;
    Kielanowski qp/03-conf;
    Civitarese & Gadella PhyA(14) [complex-energy states, entropy].
  @ Metastable states:
    Davies JFA(82) [dynamical stability].
Other Types
  > s.a. composite systems [N-particle states];
  entanglement examples [cluster states]; semiclassical
  states [including Gaussian].
  @ Energy eigenstates: Halliwell & Thorwart PRD(02)gq [and dynamics];
    Moriconi AJP(07)mar-qp [number of nodes].
  @ Ground state: Mouchet JPA(05)qp/04 [energy estimation method];
    > s.a. schrödinger equation [bounds].
  @ Bound states:
    Chadan et al JMP(96) [bound on number];
    Chadan & Kobayashi JMP(97) [sufficient condition];
    Aktosun et al JMP(98) [number, 1D];
    Chadan et al JMP(99) [number];
    Brau & Calogero JPA(03)mp/04,
    Brau JPA(03)mp/04,
    JPA(04)mp [central V, conditions and bounds];
    Chadan et al JMP(03) [number, 1D and 2D];
    Ritchie PLA(06) [relativistic];
    Fernández EJP(11)-a1101 [Wronskian method];
    König et al AP(12) [in a finite-size box];
    Kastner ch(17)-a1601
      [emergent nature, and ontologically relevant degrees of freedom of composite systems];
    Xiao et al a2004 [in the continuum];
    > s.a. atomic physics; quantum oscillators;
      quantum systems.
  @ Bipartite states: Yu et al RPMP(07)-a0711 [differential geometry];
    > s.a. entangled states.
  @ In atoms: Białynicka-Birula & Białynicki-Birula
      PRA(97)
    + pn(97)nov [Trojan states];
    Calsamiglia et al PRL(01)cm [macroscopic superpositions].
  @ Discrete:
    news PhysOrg(16)mar [hypergraph states and local realism violation].
  @ Related topics: Mould FPL(01)qp,
    qp/01,
    Ferrero et al FP(04) [physical vs subjective];
    in Sanz JPA(05)qp/04 [nowhere differentiable];
    de Oliveira et al PhyA(05),
    Malbouisson et al PhyA(07) [displaced number states];
    Luís PRA(07)
      [exponential, using Rényi entropy as uncertainty measure];
    Frey et el PRE(14)-a1404 [strongly passive states];
    Howard PRA(15)-a1501 [magic states];
    Fröwis et al RMP(18)-a1706 [macroscopic states];
    Walschaers a2104 [non-Gaussian, tutorial].
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 27 apr 2021