|  Higher-Order Lagrangian Systems | 
In General
  > s.a. classical mechanics [higher-order equations of motion].
  * Idea: A generalized
    form of mechanics, in which Lagrangians include higher-order derivatives
    (in the infinite-order case, the theory is non-local in time).
  * Motivation: One
    motivation was to see if non-local theories were free of divergence
    problems in quantum field theory, although higher-derivative terms are
    often connected with the appearance of instabilities and ghost states.
  * Remark: One usually wants
    first-order Lagrangians in order to get second-order equations of motion, define
    conserved quantities in the usual way, and perform Legendre transformations;
    Even the general relativity Lagrangian is of this kind, though it may not be
    obvious from the Einstein-Hilbert expression, because the second derivative
    terms are a pure divergence.
  * Ostrogradski theorem:
    A classical Lagrangian that contains time derivatives higher than the first
    order and is non-degenerate with respect to the highest-order derivatives
    leads to an unbounded Hamiltonian linear in the canonical momenta; > s.a.
    types of higher-order gravity theories.
  * Ostrogradski instability /
    ghost: A classical, linear instability in a higher-derivative theory,
    that one finds from the Hamiltonian constructed using Ostrogradski's
    method; However, when multiple fields are present the existence of higher
    derivatives does not automatically imply the existence of ghosts.
Non-Local Theories > s.a. non-commutative physics and
  gauge theories; partial differential equations.
  * Issue: Non-local actions generally
    possess acausal equations of motion and non-real in-out operator amplitudes.
  @ Of finite extent: Woodard PRA(00);
    Llosa PRA(03)ht/02;
    > s.a. hamiltonian systems.
  @ Time-non-local theories: Ferialdi & Bassi EPL(12)-a1112;
    Heredia & Llosa a2105 [Noether theorem and Hamiltonian];
    > s.a. locality.
  @ Related topics:
    Soussa ht/03-proc [causality];
    Calcagni et al PRD(07)-a0705 [FLRW + scalar cosmology];
    Thieme a2009 [Lagrangian densities depending on pairs of points]; 
    > s.a. FLRW spacetimes.
Other Specific Types of Theories
  > s.a. gauge transformations; higher-order
  gravity; oscillators; spinning particles.
  * Result: If a
    Lagrangian exists for an equation of any even order, then it
    can be derived from the Jacobi last multiplier.
  @ General references: Nucci & Arthurs PRS(10) [inverse problem for 4th-order equations];
    Motohashi & Suyama PRD(15)-a1411 [3rd-order equations of motion];
    Motohashi et al JPSJ(18)-a1711
      [ghost-free theory, Lagrangian with third-order time derivatives].
  @ Relativistic particle: Beau a1305
      [consequences, generalized induction principle and generalization of the concept of inertia].
  @ Field theories, second-order:
    Grigore FdP(99)ht/96 [trivial second-order Lagrangians];
    de Urries et al JPA(01) [bosonic, as constrained second-order];
    Rosado & Muñoz a1509 [admitting a first-order Hamiltonian formalism].
  @ Multiple fields: de Rham & Matas a1604 [gravitational theories like massive gravity and beyond Horndeski].
  @ Field theories, other:
    in Stelle GRG(78) [gravity];
    de Urries & Julve JPA(98) [scalar];
    Villaseñor JPA(02)ht [fermionic];
    Bazeia et al JPA(03) [2+1, dualities];
    Nguyen a0807 [principle of least action];
    Li et al IJTP(08) [gauge theories];
    Campos et al JPA(09)-a0906-conf [unambiguous intrinsic formalism];
    Mukherjee & Paul PRD(12)-a1111 [gauge invariances];
    Pulgar et al JCAP(15)-a1408 [cosmological scalar field, inspired by the Pais-Uhlenbeck oscillator];
    Izadi & Moayedi AP(19)-a1903 [infinite-derivative scalar field];
    > s.a. constrained theories.
Hamiltonian Formulation
  > s.a. hamiltonian systems; Pais-Uhlenbeck Model.
  @ General references:
    Coelho de Souza & Rodrigues JPA(69);
    Jaén et al PRD(87),
    JMP(89);
    Llosa & Vives JMP(94);
    Rashid & Khalil IJMPA(96);
    Woodard PRA(00)ht/00 [finite non-locality];
    Bering ht/00;
    Muslih & El-Zalan IJTP(07);
    Andrzejewski et al a0710;
    Morozov TMP(08)-a0712 [brief review];
    El-Zalan et al IJTP(08);
    Vitagliano JGP(10)-a0905;
    Gegelia & Scherer JPA(10)-a1003 [vs Lagrange formalism, and quantum corrections];
    Martínez et al IJMPA(11)-a1104 [perturbative Hamiltonian constraints];
    Avraham & Brustein PRD(14)-a1401 [generalized Legendre transform].
  @ Ostrogradski procedure: 
    Ostrogradskii MASP(1850) [momenta];
    Woodard a1506-en [attempts to avoid the instability];
    Massa et al IJGMP(18)-a1610 [new geometrical look];
    Öttinger JPcomm(18)-a1810 [for fourth-order evolution equations];
    Öttinger a1906
      [alternative procedure without instabilities];
    Donoghue & Menezes a2105 [the instability may be avoided in quantum theory].
  @ Field theories: Belvedere et al ZPC(95) [canonical transformations];
    Cheng et al NPB(02) [and non-commutative field theory].
  @ Infinite-derivative theories: Talaganis & Teimouri a1701 [dynamical degrees of freedom];
    Teimouri a1811-PhD.
  @ Second-order Lagrangians: Hahne a1306 [from Feynman's path integral];
    Cruz et al JMP(16)-a1310 [acceleration-dependent];
    Esen & Guha a1607 [Ostrogradsky-Legendre and Schmidt-Legendre transformations].
  @ Other types of theories:
    Schmidt gq/95 [4th-order];
    Dunin-Barkowski & Steptsov TMP(09)-a0801 [reparametrization-invariant].
  @ Ostrogradski instability: Niedermaier AP(12) [quantum cure];
    Chen & Lim JCAP(13)-a1209 [with constraints, strengthening of Ostrogradski's theorem];
    Chen et al JCAP(13) [removal by adding constraints].
  @ Modified Ostrogradski formulation:
    Leclerc gq/06;
    Andrzejewski et al PRD(10)-a1005;
    Patra et al PRI(14)-a1412 [and Regge-Teitelboim cosmology].
References
  > s.a. hamiltonian and lagrangian formulation.
  @ General: Whittaker 37;
    de León & Rodrigues 85;
    Negri & da Silva PRD(86);
    Jaén et al PRD(86);
    Gràcia et al JMP(91);
    Hojman et al JMP(92) [Lagrangian from differential equations of any order];
    Miron 03-a1003;
    Prieto-Martínez & Román-Roy JPA(11)-a1106,
    a1201-conf [Lagrangian-Hamiltonian unified formalism];
    Kijowski & Moreno IJGMP(15)-a1408 [symplectic structures].
  @ Noether theorem, symmetries: Miron IJTP(95);
    de León & Martín de Diego JMP(95);
    Sardanashvily mp/03.
  @ Geometrical: de León & Lacomba JPA(89) [in terms of symplectic higher-order tangent bundles];
    Prieto-Martínez PhD-a1410.
  @ Meaning / degrees of freedom:
    Chervyakov & Nesterenko PRD(93);
    de Urries & Julve gq/95.
  @ Related topics: Nakamura & Hamamoto PTP(96)ht/95 [path integrals];
    Benito et al IJGMP(06) [geometric integrators];
    Nesterenko PRD(07) [instability];
    Kaparulin et al EPJC(14)-a1407 [systems with bounded integral of motion that ensures their stability].
Quantization [> s.a. formulations
  of quantum mechanics and quantum systems.]
  @ General references: Hayes JMP(69);
    Tesser JMP(72);
    Acatrinei JPA(07)-a0708 [from phase space path integrals];
    Andrzejewski et al PRA(07);
    Nucci TMP(11);
    Baaquie IJMPA(13)-a1211,
    IJMPA(13)-a1211 [action with acceleration term];
    Raidal & Veermäe NPB(17)-a1611
      [complex classical mechanics and avoiding the Ostrogradsky ghost];
    Smilga IJMPA(17)-a1710 [benign ghosts and the Theory of Everything];
    Motohashi & Suyama a2001 [quantum Ostrogradsky theorem].
  @ In quantum field theory:
    Pais & Uhlenbeck PR(50);
    > s.a. Pais-Uhlenbeck Model;
      path integrals;
      quantum oscillators.
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
send feedback and suggestions to bombelli at olemiss.edu – modified 29 may 2021