|  Quantum Systems with Special Potentials | 
Some Common Types
  > s.a. quantum systems [with symmetries] / anomalies;
  hilbert space; quantum oscillator;
  wigner function.
  @ Inverse square: Gozzi & Mauro PLA(05) [scale symmetry, anomaly];
    Ávila-Aoki et al PLA(09) [classical and quantum motion];
    > s.a. representations [in the polymer representation].
  @ δ-function potential: Gosdzinsky & Tarrach AJP(91)jan [and quantum field theory model];
    Demiralp & Beker JPA(03) [bound states];
    > s.a. relativistic quantum theory.
  @ Other central potentials: Ciftci et al JPA(03) [Coulomb + power law];
    Martin qp/04 [near r = 0];
    Alberg et al PRA(05)qp/04 [1/r4, renormalization];
    Hall et al PRA(09)-a0908 [soft Coulomb potential];
    Roy a1904-in [general method];
    > s.a. relativistic quantum mechanics; quantum states [bound].
  @ Other singular potentials: Esposito JPA(98)ht [scattering],
    FPL(00)qp/99;
    Landsman gq/98;
    Schulze-Halberg IJTP(00) [irregular singularity];
    Tsutsui & Fülöp qp/03-proc [defects etc];
    Fülöp Sigma(07)-a0708-proc [ambiguity in self-adjoint Hamiltonian];
    Eckhardt et al JDE(14)-a1401 [δ'-interactions on complicated sets];
    Lange a1401 [boundary conditions, distributional theory];
    Costa Dias et al JDE-a1601 [Schwartz-distributional formulation];
    Samar & Tkachuk a1812
      [1/x2, regularization with deformed-space minimal length];
    > s.a. perturbation methods.
  @ Periodic potentials: Holstein AJP(88)oct [semiclassical];
    Khare & Sukhatme JPA(04)qp [rev, solvable];
    Pereyra AP(05) [finite-size];
    Pavelich & Marsiglio AJP(15)sep-a1411 [general repeated confining potential];
    > s.a. coherent states.
  @ Periodic in time: Costin et al JPA(00)mp/06 [bound state survival probability],
    JPA(02)mp/06,
    JSP(04)mp/06,
    mp/06;
    López qp/06;
    Duclos et al RVMP(08)-a0710 [stability]; Martin & Poertner a2104 [Floquet's theorem].
Potential Steps, Wells and Similar Systems > s.a. pilot-wave
  phenomenology; quantum systems [time-dependent boundaries].
  @ Potential steps: Ahmed PLA(96);
    Boonserm & Visser JPA(09)-a0808 [transmission probabilities];
    Yearsley JPCS(09)-a0901 [propagator, path integral];
    Jaffe AJP(10)jun
      [reflection above the barrier as tunneling in momentum space];
    Garrido et al AJP(11)dec [reflection at a downward potential step].
  @ Infinite well / box: Leyvraz et al AJP(97)nov [accidental degeneracy];
    Ni qp/98 [Einstein, Pauli, Yukawa];
    Colanero & Chu PRA(99)qp [oscillating];
    Sankaranarayanan et al PRE(01)nl [periodic pulsing and chaos];
    Waldenstrøm et al PS(03) [revivals];
    Garbaczewski & Karwowski AJP(04)jul-mp/03;
    García de León et al PLA(08) [coherent state approach];
    Pedram & Vahabi AJP(10)aug [with a δ-function potential];
    Ogren & Carlsson EJP(11)-a1103 [lower energy bound];
    Gaddah EJP(13) [2D, equilateral triangle];
    Belloni & Robinett PRP(14) [and Dirac delta, as pedagogical models];
    Alberto et al EJP(18)-a1711 [relativistic, Klein-Gordon vs Dirac equations];
    > s.a. path integrals.
  @ Finite square well: Bender et al JPA(99) [complex];
    Blümel JPA(05) [analytical solution];
    Roberts & Valluri CJP(17)-a1403 [using the Lambert W function];
    Naqvi & Waldenstrøm a1505 [tutorial review];
    > s.a. modified quantum theory [PT-symmetric].
  @ 2D billiard: Cohen & Wisniacki PRE(03)nl/02 [moving walls];
    Gutkin JPA(03) [plane waves and solutions].
  @ Double well: Holstein AJP(88)apr [semiclassical];
    Razavy NCB(01) [Heisenberg equation of motion];
    Friedberg et al AP(01)qp;
    Roy & Bhattacharjee PLA(01)qp [chaos];
    Tian & Zhong ChPL(10)-a1003 [new model];
    > s.a. coherent states.
Atoms and Systems in External Fields
  @ Hydrogen atom:
    Hofer qp/98 [different];
    Parfitt & Portnoi JMP(02)mp [2D];
    Alves et al PRA(03)ht/05 [between parallel plates];
    Palma & Raff CJP(06)qp [1D];
    Zhao et al PRD(07)-a0705 [in Schwarzschild metric];
    Martínez-y-Romero et al AJP(07)jul [with group theory methods];
    Jaramillo et al PLA(09) [1D];
    Machet & Vysotsky PRD(11)-a1011 [in a superstrong magnetic field];
    Sharipov a1308 [proton and electron coupled to the electromagnetic field];
    Ferreyra & Proetto AJP(13)nov [compressed in a spherical well];
    Ogawa a1607 [algebraic method];
    Chua a1805 [using the Runge-Lenz vector];
    > s.a. born-infeld theory; momentum representation;
      topological defects.
  @ Helium atom:
    Schwartz mp/06 [ground state];
    Withers & Nadarajah RPMP(11) [solutions of Schrödinger's equation];
    Esposito & Naddeo FP(12)-a1207 [Majorana and the two-electron problem]. 
  @ In an electric field: Karasev & Osborn JMP(02)qp/00 [electromagnetic fields];
    Matteucci EJP(07) [intro]. 
  @ In a gravitational field:
    Chacón-Acosta et al a1904 [particle falling].
  @ In a magnetic field: Krause PRA(96) [constant];
    Schmiedmayer & Scrinzi PRA(96) [linear current];
    Thienel AP(00)qp/98;
    Nambu NPB(00) [2D, vortices and field];
    Schuch & Moshinsky JPA(03) [coherent states];
    Chiou et al mp/04 [self-linking B field];
    > s.a. aharonov-bohm effect.
Other Types of Potentials
  > s.a. integrable quantum systems; relativistic
  quantum theory [non-local]; schrödinger equation.
  * Quasi-integrable: A spectral
    problem depending on a parameter, such that a finite set of eigenvalues
    can be obtained algebraically for special values of the parameter.
  @ Exactly solvable: Fernández IJMPA(97)qp/96 [supersymmetric];
    Rosas-Ortiz JPA(98)qp,
    qp/98-proc;
    Alhaidari mp/03 [larger class];
    de Prunelé JPA(06) [2D];
    Tremblay et al JPA(09) [and integrable, 2D, infinite family];
    Odake & Sasaki PLB(09)-a0906;
    Alhaidari PS(10)-a1004,
    Bahlouli & Alhaidari PS(10)-a1004 [larger class];
    Quesne JPCS(12)-a1111 [and exceptional orthogonal polynomials];
    > s.a. coherent states.
  @ Conditionally exactly solvable:
    Roychoudhury et al JMP(01).
  @ Quasi-exactly solvable / integrable:
    Turbiner CMP(88),
      JPA(89);
    Ushveridze SJPP(89); Lazutkin 93 [nearly integrable, IV];
    Braibant & Brihaye JMP(93) [applications];
    Ushveridze 94;
    Bender & Dunne JMP(96)ht/95;
    Bender & Boettcher JPA(98)phy [quartic];
    Debergh et al AP(02)qp,
    IJMPA(02)qp [Darboux transformations],
    IJMPA(03)qp/02;
    Geojo et al JPA(03)qp/02 [Hamilton-Jacobi method];
    Atre & Panigrahi PLA(03) [approach];
    Bender & Monou JPA(05)qp [sextic];
    Koc & Koca mp/05 [Pöschl-Teller et alia],
    mp/05 [Eckart-type potentials];
    Klishevich mp/06-conf [conditions].
  @ Random potentials: Yannacopoulos et al PS(02) [2D];
    Germinet & Klein mp/05,
    mp/06 [localization];
    Baker et al CMP(08) [deformed lattice];
    > s.a. Anderson Localization.
  @ PT-invariant: Weigert CzJP(04)qp;
    Ahmed JPA(05) [classical orbits and quantization].
  @ Other complex potentials: Muga et al PRP(04) [scattering, absorption].
  @ Other types: Damanik et al CMP(05)mp/04 [with finitely-many bound states];
    Smilga JPA(09)-a0808 [exceptional points];
    Fabre & Guéry-Odelin AJP(11)jul-a1012 [exactly solvable, supersymmetry and approximation schemes];
    Di Martino et al JPA(13)-a1306,
    Cooney a1703 [box with moving walls];
    Teichert et al a1910 [equidistant energy levels];
    > s.a. Bloch Theory;
      Pöschl-Teller Potential;
      quantum oscillators; Rotor;
      Yukawa Potential.
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 15 apr 2021