|  Dissipative Systems | 
In General
  > s.a. fluctuations; Kinetic
  Theory; specific heat.
  * Idea: A
    dissipative system (also called damped system) is one subject
    to a non-conservative force that dissipates energy.
  * Description: As
    a dynamical system, time evolution is described by a semigroup of
    transformations, rather than a group, since it is associated with a
    preferred time direction, and using contact structures; Dissipative
    processes contract volumes in phase space.
  @ General references: Bimonte et al PLA(03)ht,
    MPLA(03)ht-conf [Peierls-type brackets for Langevin equation];
    Chruściński RPMP(06) [Koopman's operator and role of resonant states];
    Kawai et al PRL(07) [average dissipation in a transition between equilibria];
    Sonnino & Evslin PLA(07)
      [relaxation, minimum rate of dissipation principle];
    Ichinose a1305 [renormalization-group approach];
    Razavy 17 [classical and quantum].
  @ Variational principles:
    Patiño & Rago NCB(01);
    Luo & Guo a1102 [new variational principle];
    Kraus & Osborne PRA(12)-a1206 [time-dependent];
    Taverna & Torres MMAS(15)-a1404 [generalized fractional operators and non-standard Lagrangians];
    Lazo & Krumreich JMP(14)-a1412 [action principle];
    Martínez-Pérez & Ramírez JMP(18)-a1708 [Lagrangian, and Noether's theorem].
  @ Hamiltonian formulation: Rajeev AP(07) [complex Hamiltonian and quantization];
    Luo & Guo a0803;
    Fröhlich et al CMP(12)-a1110
      [friction from Cerenkov radiation in a model for a heavy particle in a medium];
    Schuch et al a1306 [relations between approaches];
    de León & Sardón a1607 [geometric Hamilton-Jacobi theory];
    Gaset et al a1907
      [Hamiltonian and Lagrangian contact formalisms, symmetries];
    > s.a. hamiltonian systems.
Types of Systems
  > s.a. classical systems; fluids
  [non-perfect]; Friction; open systems;
  oscillators; wave phenomena [attenuation].
  @ Relativistic mechanics: González IJTP(07)qp/05,
    IJTP(07) [1D system Lagrangian and Hamiltonian];
    Tarasov AP(10).
  @ Constrained: Nguyen & Turski JPA(01) [Dirac-like brackets].
  @ Chaotic: Bag et al JPA(00) [entropy production];
    Motter et al PRL(13)
    + news PhysOrg(13)nov [doubly transient chaos].
  @ Non-Markovian: Koch et al PRL(08) [semiclassical];
    > s.a. brownian motion.
  @ Field theories: Vitela AJP(04)mar [electromagnetic waves in dissipative media];
    Gaset et al a1905 [contact geometry framework].
  @ Dissipative subsystem of conservative system:
    Wesz RPMP(06) [perturbation theory]. 
  @ Related topics:
    Romano PhD(02)hp/03 [in particle physics];
    Krechetnikov & Marsden RMP(07) [dissipation-induced instabilities];
    Herrera et al PLA(12)-a1201 [reversible dissipative processes];
    Bardyn et al NJP(13) [dissipation as a resource for many-body dynamics, and topological phases].
Quantum Dissipative Systems
  > s.a. modified quantum mechanics [non-Hamiltonian];
  quantum systems;
  spin systems.
  * Idea: Phenomena
    of decoherence and dissipation in quantum mechanics arise from the
    interaction with the environment.
  * And quantum foundations:
    A deterministic, dissipative classical model is used in a proposal
    by 't Hooft for obtaining quantum mechanics; > s.a.
    origin of quantum mechanics.
  @ General references:
    Feynman & Vernon AP(63),
    reprint AP(00) [and influence functionals];
    Rajagopal & Rendell PhyA(02)qp/01;
    Rau & Wendell PRL(02)qp;
    Tarasov PLA(02)-a1107 [stationary states];
    Richardson AP(06);
    Tsekov NAP(09)-a0903;
    Öttinger EPL(11)-a1002 [geometry and thermodynamics];
    Chruściński et al OSID(12)-a1102 [observables];
    Abreu & Godinho PRE(11)-a1102 [using fractional calculus];
    Weiss 12;
    Sanz et al AP(14)-a1306 [Bohmian analysis];
    Aivazian a1702 [extended Hilbert phase space formalism];
    Anuar a1705 [canonical quantization].
  @ Path-integral approach: Jain et al AJP(07)mar [evolution, types of damping];
    Barth et al PRA(16)-a1607 [combined Hamiltonian and non-Hamiltonian dynamics].
  @ And decoherence: Retamal & Zagury PRA(01) [and pure states];
    Ambegaokar JSP(06)qp/05 [quantum oscillator];
    Mousavi & Miret-Artés JPcomm(18)-a1711.
  @ Chaos, stability: Cohen AP(00);
    Cubitt et al CMP(15)-a1303;
    Lucia et al PRA(15)-a1409 [rapid mixing and stability];
    Brandão et al JMP(15)-a1505 [rapidly mixing, area law for the mutual information for fixed points].
  @ Types of systems: Senitzky PR(60) [damped oscillator];
    Hakim & Ambegaokar PRA(85) [free particle in dissipative environment];
    Ozorio de Almeida et al JPA(09)-a0708 [Markovian, semiclassical];
    Poletti et al proc(13)-a1212 [many-atom systems and the effect of interactions on the rate of decoherence];
    Polonyi PRA-a1502 [test particle interacting with an ideal gas];
    > s.a. quantum oscillators [damped].
  @ Special topics: Blasone et al PLA(01) [and quantum zero-point energy];
    Moshinsky & Schuch JPA(01) [and diffraction in time];
    Mensky & Stenholm PLA(03) [and continuous measurement];
    Sivasubramanian et al PLA(03) [induced non-commutative geometry];
    Terra Cunha et al qp/04 [time scale];
    López et al qp/05 [position-dependent coefficient and ambiguity];
    García-Mata et al PRA(05)qp [quantum phase space contraction rate];
    Wysocki PRA(05) [hydrodynamic quantization];
    Khademi & Nasiri qp/05 [extended phase space];
    Urasaki qp/07 [and reality].
  @ Field theories: Calzetta & Hu PRD(89) [dissipation from particle creation];
    Zhong et al ChPB(14)-a1212 [condensate + continuum, effects of dissipation and non-linearity];
    > s.a. quantum field theory in curved spacetime.
  > Gravitational:
    see approaches to quantum gravity;
    minisuperspace quantum cosmology.
  > Related topics:
    see deformation quantization; entanglement;
    Lindblad Equation; quantum phase
    transitions; vacuum; zeno effect.
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 2 aug 2019