|  Macroscopic Quantum Systems | 
In General > s.a. classical limit [including correspondence principle, localization];
  classical-quantum relationship; many-particle quantum systems.
  * Idea: A
    macroscopic quantum state emerges in a sample of matter when the
    particles' thermal wavelength approaches the interparticle spacing; The
    particles then lose their individual identities and merge into a single
    correlated quantum state of matter, whose behavior differs markedly from
    that of a collection of distinguishable pointlike particles.
  * Examples:
    Superfluid helium, superconductors, gaseous Bose-Einstein condensates,
    and the interiors of neutron stars.
  @ General references: Bose et al PRA(99);
    Gomatam JCS(99)-a0708;
    Carati & Galgani FP(01);
    Sewell 02;
    Björk & Mana JOB(04)qp/03 [criterion];
    Biswas qp/03;
    Pitowsky PRA(04);
    Helland qp/05;
    Khrennikov a0705 [quantumlike description];
    Schützhold PoS-a0712 [back-reaction];
    Zeh EPJH(11)-a0804 [Feynman, and gravitational fields];
    Chou et al JPCS(11)-a1106 [framework, large-N expansion];
    Brezinski & Rupnick a1312;
    Sekatski et al PRL(14)-a1402 [quantumness];
    Fröwis et al RMP(18)-a1706 [rev];
    > s.a. experiments; logic.
  @ Condensed-matter type: Bene qp/97/PRL;
    Balucani et al PRP(03) [correlations];
    Grandy FP(04),
    FP(04),
    FP(04) [time evolution];
    Khrennikov FP(05)qp/04 [concept];
    Pitowsky PRA(04) ["combinatorial"];
    Bruus & Flensberg 04;
    Lipparini 08 [fluid];
    Caldeira 14 [magnetism, superconductivity, dissipation];
    Quandt-Wiese a1701 [solids in quantum superpositions];
    news pw(18)jun [nanocrystals];
    >  s.a. condensed-matter physics.
  @ Examples: O'Connell Nat(10)apr
    + news ns(10)mar [mechanical resonator];
    Jääskeläinen PRA(12) [spherical mass, gravitational self-localization];
    Chen JPB(13)-a1302 [optomechanics, theory and experimental concepts];
    Hu et al PRA(17)-a1606 [violation of classical physics in a mesoscopic system];
    Stamper-Kurn et al Nat(16)sep-a1607,
    reply Kovachy et al a1607
      [macroscopic quantum superpositions still experimentally unestablished].
  @ Quantum behavior: news nat(07)nov;
    Banks a0907 [locality and deviations from classical behavior];
    Poot & van der Zant PRP(12)-a1106;
    Yadin & Vedral PRA(15)-a1407 [new quantumness criterion];
    Kryukov JMP(17)-a1710 [evolution];
    Dalton a1808 [Bell non-locality].
  @ Other foundations / interpretations: Finkelstein qp/98 [many-worlds and pilot-wave];
    Lanz et al JPA(07)qp;
    > s.a. quantum foundations.
  @ And measurement: Leggett PTPS(80);
    Prosperi IJTP(94);
    Jeong et al JOSA(14)-a1404 [detecting macroscopic quantumness];
    news cosmos(18)may [quantum drum from silicon nitride membrane and light];
    > s.a. Leggett-Garg Inequality.
  @ Related topics: Van Zandt AJP(77)jan [and interference];
    Banks a0809 [and locality];
    Galvan a0910 [permanent spatial decomposition];
    Fröwis & Dür NJP(12)-a1205 [measure of macroscopicity for quantum states];
    Altaisky NAP-a1607 [two partial orders, and consciousness].
  > Related topics:
    see classical mechanics [non-quantum systems];
    decoherence; Ehrenfest Time;
    electricity [thermoelectric devices]; Emergent Systems;
    origin of quantum mechanics; quantum chaos;
    quantum mechanics formalism [ambiguities]; quantum statistical
    mechanics [relationship with classical]; Superfluids.
Systems at the Classical-Quantum Boundary
  > s.a. types of states [semiclassical].
  @ General references: Aerts & Durt FP(94) [intermediate systems];
    Baseia et al PLA(98) [obtaining non-classical states];
    Frasca JPCS(07)qp/06 [and thermodynamic limit];
    Doubochinski & Tennenbaum a0711-conf [amplitude quantization, or Macroscopic Quantum Effect, as bridge];
    Margolus a0805;
    Aristov & Nikulov a1006-proc [nanostructures];
    Kofler & Brukner a1009 [limits to applicability of quantum mechanics];
    Chafin a1308 [wave functions for classical bodies];
    Jeong et al OC(15)-a1407 [quantumness];
    Zinner EPJwc(16)-a1510 [1D cold atoms, few- to many-body crossover].
  @ Specific systems: Alicki PRA(02)qp/01 [fullerenes];
    Tebbenjohanns et al PRL(19) [optically levitated nanosphere].
  @ Emergence of macroscopic realism:
    Portolan et al PRA(06) [for photons];
    Kofler & Brukner PRL(07)qp/06;
    Kofler & Brukner PRL(08)-a0706 [conditions for quantum violation of macroscopic realism];
    Nimmrichter & Hornberger PRL(13)
    + news ns(13)apr,
    pw(13)apr [degree of macroscopicity];
    Colin et al PRA(16)-a1403 [spread in position of a freely falling nanosphere];
    Clemente & Kofler PRA(15)-a1501 [conditions for macroscopic realism];
    Romero-Rochin a1504.
  @ Dequantization: Isidro JPA(02)ht/01;
    Abrikosov et al AP(05)qp/04 [geometric].
  > Related topics:
    see Correspondence Principle; fluctuations;
    Superpositions [meso- and macroscopic].
 Coupled / Hybrid Classical and Quantum Systems
  > s.a. states in quantum field theory [hybrid field systems].
  * Issue: Is a system with
    coupled classical and quantum degrees of freedom consistent? It can be,
    provided it is stochastic.
  * Rem: Hybrid systems are
    sometimes used as a tool to simplify the analysis of many-body systems,
    as in mean-field theory.
  @ General references:
    Blanchard & Jadczyk PLA(93) [model];
    Anderson qp/95-proc
      [backreaction of quantum variables on quasiclassical ones];
    Salcedo PRA(96);
    Halliwell PRD(98)qp/97 [from decoherent histories];
    Prezhdo & Kisil PRA(97)qp/96;
    Antoniou et al MPLA(99) [Hamiltonian];
    Caro & Salcedo PRA(99) [impediments];
    Dias JPA(01)qp/99 ["half quantization"];
    Diósi qp/99-in;
    Peres & Terno PRA(01)qp/00;
    Prezhdo & Brooksby PRL(01),
    comment Salcedo PRL(03)qp [quantum backreaction and the Bohmian interpretation];
    Kowalski et al PLA(02);
    Sahoo JPA(04)qp/03 [observable algebras];
    Kisil EPL(05)qp [2 copies of Heisenberg group];
    Hall & Reginatto PRA(05)qp [classical and quantum ensembles];
    Grigorescu CJP(07)qp/06 [quantum particle + classical environment, variational principle];
    Zhang & Wu PRL(06) [Lorentz-like geometric force];
    Zhan et al JChemP(08)-a0803 [approaches];
    Hall PRA(08)-a0804 [consistent formulation];
    Reginatto & Hall JPCS(09)-a0905;
    Gerasimenko JChemP(09)-a0909;
    Elze et al JPCS(11)-a1103 [path-integral formulation],
    PRD(12)-a1111;
    Salcedo PRA(12)-a1201 [consistency requirement];
    Elze JPCS(12)-a1202 [four questions];
    Barceló et al PRA(12)-a1206;
    Elze JPCS(13)-a1306 [summary];
    Gil & Salcedo PRA(17)-a1612 [canonical structure];
    Gay-Balmaz & Tronci a1802 [from Koopman-von Neumann theory];
    Bhole et al JPComm(20)-a1812 [witnesses of non-classicality];
    Amin & Walton a2009 [hybrid quantum-classical bracket];
    Tronci & Gay-Balmaz LNCS-a2104,
    LNCS-a2104 [from Koopman-van Hove theory].
  @ Inconsistency: Terno FP(06)qp/04,
    reply Sudarshan qp/04;
    Ahmadzadegan et al PRA(16)-a1510 [robustness of classicality];
    Ares et al a1801;
    Braak & Mannhart a1811
      [inconsistency between quantum theory and thermodynamics].
  @ Examples: Semenov et al JPB(06)qp/05 [oscillator + thermal bath];
    Metaxas PRD(07)ht/06 [two scalar fields, path-integral approach];
    Aguilar & Berglund JMP(08)-a0805 [two-level system + classical noise];
    Mousavi & Golshani PS(08) [2-level atom + classical field];
    Poma & Delle Site PRL(10) [molecular models, path-integral description];
    Chua et al PRA(11)-a1109 [harmonically coupled particles];
    Treutlein et al a1210-ch;
    Restrepo et al PRL(14) [optomechanical resonator with a quantum dot inside];
    Sergi TCA(15)-a1502 [systems with light and heavy degrees of freedom, non-Hermitian];
    Koide a1602 [simplified model of QED];
    Rubin a1610 [density matrix embedding theory as a tool];
    news pw(17)sep
      [measuring quantized mechanical oscillations];
    Reginatto & Hall a1809 [quantum fields and classical gravity];
    Oppenheim et al a2011 [toy models];
    > s.a. Mean-Field Theory.
  @ Ground state and coherent state: McDermott & Redmount qp/04 [2 oscillators].
  @ Intervention, measurement: Diósi & Halliwell PRL(98)qp/97;
    Peres PRA(00),
    PRA(00);
    > s.a. types of measurements [continuous].
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 28 apr 2021