|  Composite Quantum Systems | 
In General
  > s.a. Composite Systems [general theory, and internal degrees of freedom];
  Individuality; quantum states;
  spin models.
  * Idea: Considering a quantum system
    as composed of subsystems A and B means treating its Hilbert space
    as the tensor product \(\cal H\) = \(\cal H\)A
    ⊗ \(\cal H\)B.
  * Rem: The view that
    the physical world forms a compositional hierarchy does not stand up
    to a close examination of how physics has treated composition.
  @ General references:
    Wilce IJTP(90);
    Coecke FP(98)qp/01,
    IJTP(00)qp [characterization];
    Kummer IJTP(99) [2 spin-\(1\over2\) particles, state space];
    Aerts IJTP(00)qp/01 [paradox],
    & Valckenborgh IJTP(04) [failure of quantum mechanics];
    Johnson mp/06 [formalism];
    Blanchard & Brüning PLA(06) [structure of states, envariance];
    Albeverio et al RPMP(07) [local invariants];
    Blasone et al IJMPA(09) ['t Hooft's quantization proposal];
    Khrennikov a0905 [classical vs quantum descriptions, and entanglement];
    Jeknić-Dugić et al a1306 [systematic account of decomposition];
    Healey SHPMP(13) [conceptual];
    Wood & Zych a1911
      [states with minimal uncertainty in spacetime].
  @ Subsystems: Orlov PRL(99) [measurement and indeterminism];
    Zanardi et al PRL(04)qp/03 [observable-induced partition];
    Zanardi et al PRL(04) [partition induced by observables];
    Petz RPMP(07) [complementary];
    Jordan a0710 [maps describing evolution];
    Alicki et al PRA(09)-a0902 [formalism in terms of completely positive maps and correlation functions];
    Fields a0906
      [consistency of decomposition and consequences];
    Fortin & Lombardi FP(14) [partial traces and reduced states];
    Jaeger FP(14) [identification of parts, and condition for elementarity];
    Stokes et al JMO(17)-a1602 [identifying subsystems using Clausius' second law of thermodynamics];
    > s.a. entanglement entropy;
    open systems.
  @ Correlations:
    Kübler & Zeh AP(73);
    Linden et al qp/02 [n-way].
  @ Entanglement: Hubeny et al a1812 [based on relations between subsystem entropies];
    > s.a. entangled systems [multipartite].
  > Related topics:
    see diffraction; entropy; Envariance;
    Mereology; mixed states;
    observables [subdynamics]; particle statistics
    [including identical composite objects]; renormalization;
    scattering.
Few Degrees of Freedom
  > s.a. Born-Oppenheimer Approximation.
  @ General references: Thirring 81;
    Glöckle 83;
    Parker & Doran qp/01-proc [2-particle basis and entanglement];
    Greene PT(10)mar [universality];
    Rohwer et al JPA(10)
      [objects with spatial extent and structure, non-commutative quantum mechanics];
    Sancho AP(13)-a1307
      [optical properties of multiparticle systems in collective and entangled states vs product states].
  @ Two-body problem: Droz-Vincent PLA(90) [relativistic, in constant B field];
    Torres et al JMP(10)-a0911 [two atoms in a cavity, concurrence and purity];
    Chacón-Acosta & Hernández a1110 [hydrogen atom, semiclassical treatment];
    Harshman AIP(12)-a1210 [observables and entanglement].
  @ Three-body problem / systems:
    Mohr et al AP(06);
    Guevara et al PRL(12)-a1110
    + news pw(12)jun [three-body states];
    Turbiner et al JMP(18)-a1707 [in d dimensions];
    synopsis Phy(18)jun [bosons confined in a one-dimensional system];
    > s.a. Efimov Effect; Three-Body Forces.
  @ Other few-particle systems: Wyderka et al PRA(17)-a1703 [4-particle states and 2-particle marginals].
  @ Molecules: Arndt et al Nat(99)oct
    + pn(99)oct [buckyballs, C60];
    Armour et al PRP(05) [stability of few-charge systems];
    Mitin a1508
      [hydrogen molecular ion H2+];
    Doma et al JMolP(16)-a1509 [H2 molecule and
      H2+ ion with a magnetic field].
Other Types of Systems > s.a. fermions [composite];
  many-particle quantum systems; particles [elementary vs composite].
  @ Discrete + continuum, particle + field: Stenholm & Paloviita JMO(97)qp;
    Aguiar Pinto & Thomaz JPA(03)qp/02 [decay];
    Kupsch Pra(02)mp [particle + IR divergent boson];
    Gardas JPA(11)-a1103 [spin-boson Hamiltonian];
    > s.a. Dicke and Friedrichs Model;
      entropy in quantum theory [Wehrl entropy].
  @ Other systems: Quesne & Tkachuk PRA(10)-a0906 [with minimal length].
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 14 nov 2020