|  Quantum Field Theory – Generalized and Modified Theories | 
In General
  > s.a. fock space; poincaré group;
  quantum fields in curved spacetime; types of fields
  and types of theories [including non-Lagrangian].
  * Motivation, limits of
    validity: A natural UV cutoff in the validity of quantum field
    theory is expected from quantum gravity or string theory, and would
    help solve divergence problems.
  * Galilei-invariant:
    The quantum version of a field theory which is not relativistically
    invariant, but only invariant under the Galilei transformations; In
    it, there is no particle creation and annihilation.
  * Higher-derivative
    theories: They are often assumed to have ghosts, but in reality it
    is the (fourth + second)-order theory with a mass parameter m
    that has ghosts, while the pure fourth-order one is a singular limit
    and doesn't; This arises in the linearization of conformal gravity.
  * Non-local theories:
    Several, differently motivated attempts at non-local (not generated by
    pointlike fields) relativistic particle theories have been made, the most
    recent one being quantum field theory on non-commutative spacetime.
  @ Generalized theories: Clarke IJTP(79),
    JPA(90) [group bundle theories];
    Calcagni & Nardelli IJMPA(14)-a1306 [with spacetime-dependent couplings];
    Kuwahara et al PLA(13)-a1307 [non-conservative];
    Friedan a1605
      [quantum field theories of (n−1)-dimensional extended objects].
  @ Limits to quantum field theory: Cohen et al PRL(99)ht/98 [entropy bounds and large Vs];
    Carmona & Cortés PRD(02)ht/00 [100 TeV cutoff, and quantum gravity];
    > s.a. quantum-gravity phenomenology.
  @ Quaternionic:
    Adler CMP(86);
    Brumby & Joshi FP(96)ht [consequences].
  @ Non-Fock Hilbert spaces:
    Tsirelson ht/99 [fermions].
  @ Higher-derivative theories:
    Weldon AP(03);
    Nguyen a0709 [self-interacting scalar field];
    Ghosh & Shankaranarayanan PRD(12)-a1211 [entanglement signatures of phase transition];
    Talaganis a1707
      [infinite-derivative scalar field action, unitarity];
    Asorey et al a1802 [unitarity properties];
    Buoninfante et al a1805 [infinite-derivative, ghost-free];
    > s.a. Lee-Wick Models; Pais-Uhlenbeck Model.
  @ Non-local theories: Yukawa PR(50) [s = 0, 1/2 or 1];
    Cornish IJMPA(92);
    Breckenridge et al CQG(95)ht [in quantised spacetime];
    Barci et al IJMPA(96)ht/95;
    Amorim & Barcelos-Neto JMP(99) [non-local massive s = 1];
    Piacitelli JHEP(04) [diagram rules];
    Schroer AP(05)ht/04 [rev];
    Wang JMP(08);
    Addazi & Esposito IJMPA(15)-a1502 [without acausality and non-unitarity];
    Tomboulis PRD(15)-a1507 [UV finiteness, unitarity of amplitudes];
    Belenchia et al PRD(16)-a1605 [low-energy signatures, proposed experiment, and quantum gravity];
    Bernard et al a1903-Part;
    > s.a. causality; quantum systems;
      non-local field theories; unruh effect.
  @ Over a Galois field: Lev ht/02 [and spin-statistics],
    ht/02 [supersymmetry],
    ht/04 [general].
  @ Other types: Anco & Wald PRD(89) [algebra-valued fields];
    Haag CMP(93) [characterizing models];
    Ribarič & Šušteršič ht/97 [transport-theoretic],
    FizB(02)ht/01 [finite alternative theory];
    Yang ht/98-conf,
    ht/98 [as effective theory from finite one];
    Dürr et al JPA(05)qp/04 [Bell-type Markov processes/trajectories];
    Balakov et al CMP(07) [bilocal, scalar];
    Finkelstein a1403,
    a1403 [quantum set algebra];
    > s.a. Adelic Structures; homology
      [chain-complex-valued]; modified quantum mechanics [PT symmetry];
      p-Adic Structures; perfect fluids.
Finite-Temperature / Thermal Field Theory
  > s.a. quantum statistical mechanics
  [thermofield dynamics]; stochastic quantization.
  * Approaches: The main
    ones are the imaginary-time (Matsubara) formalism, the closed-time
    formalism and thermofield dynamics.
  @ Introductions and reviews:
    Altherr IJMPA(93);
    Le Bellac 96;
    Das 97;
    Landshoff hp/97-ln;
    Andersen & Strickland AP(05) [perturbative];
    Laine & Vuorinen 16.
  @ General references: Ccapa Ttira et al PRD(08)-a0803 [dual path-integral representations];
    Khanna et al 09;
    Fister & Pawlowski a1112 [Yang-Mills correlation functions];
    Bischer et al a1901 [at high T].
  @ Finite-temperature classical field theory:
    Gozzi & Penco AP(11)-a1008 [three approaches].
  @ Related topics: Quirós HPA(94) [phase transitions];
    Boyanovsky et al PRD(04)hp/03 [2D φ4 thermalization];
    Kapusta & Gale 06;
    Meyer JHEP(09) [finite-volume effects];
    Millington & Pilaftsis PRD(13)-a1211,
    JPCS(13)-a1302 [non-equilibrium, perturbative formulation].
  > Systems and related topics:
    see de sitter spacetime; standard model;
    types of quantum field theories [finite-temperature effects].
  > Online resources:
    see Wikipedia page.
Deformed and Quantum-Gravity Motivated Theories
  > s.a. canonical quantum gravity;
  non-commutative field theory [including braided].
  @ General references:
    Gadiyar ht/96;
    Hurth & Skenderis NPB(99)ht/98,
    LNP(00)ht/98 [with symmetries];
    García-Compeán et al IJMPA(01)ht/99 [scalar and abelian gauge theory],
    JPA(02)ht/01 [second quantization of Schrödinger equation];
    Kosiński et al ht/00-proc,
    PAN(01)ht/00-proc;
    Bezerra et al PRD(02),
    PRD(02) [q-deformed, perturbative];
    Dito m.QA/02-proc [covariant field theory];
    Sardanashvily ht/02 [polysymplectic];
    Hirshfeld & Henselder AP(02)ht [star products];
    Matsuo & Shibusa MPLA(06)ht/05 [based on gup];
    Carmona et al PRD(09)-a0905 [with modified commutation relations];
    Induráin & Liberati PRD(09)-a0905 [with non-canonical commutation relations, and DSR];
    Lechner et al LMP(13)-a1209 [equivalence of two deformation schemes].
  @ On curved spacetimes: Iorio et al AP(01)ht [deformation and curved spacetime];
    Morfa-Morales JMP(11)-a1105 [on de Sitter spacetimes].
  @ Fractal spacetime:
    Eyink CMP(89),
    CMP(89);
    Calcagni JHEP(10)-a1001 [power-counting renormalizable theory];
    Kar & Rajeev AP(12)-a1110;
    > s.a. fractals in physics.
  @ Other generalized background: Kaiser AP(87) [complex spacetime];
    Birmingham & Rakowski MPLA(94) [simplicial complex, intersection form action];
    White et al CQG(10)-a0812 [signature-changing];
    Weinfurtner et al JPCS(09)-a0905 [in analog gravity];
    Meljanac et al a1701,
    Mignemi a1911-conf [generalized Snyder spaces].
  @ With fundamental length scale: Brüning & Nagamachi JMP(04) [in terms of ultra-hyperfunctions];
    Hossenfelder CQG(08)-a0712;
    Soloviev JMP(09)-a0912,
    JMP(10)-a1012.
  @ Discrete: Kur'yan in(91) [discrete spacetime];
    Norton & Jaroszkiewicz JPA(98) [discrete time];
    Häußling AP(02) [and non-commutative geometry];
    Gudder a1704;
    > s.a. quantum field theory on graphs.
  > Related topics: see fractional
    calculus; non-standard analysis; quantum field
    theory states [including non-equilibrium].
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 21 feb 2021