|  Geometric Quantization | 
In General > s.a. canonical quantum theory.
  * Idea: A quantization method,
    generalizing the usual canonical one; The classical phase space doesn't have
    to be a cotangent bundle, and one has a general framework to talk about
    different representations (coordinate, momentum, Bargmann).
  * History: Souriau prepared the
    way, studying the phase space as the set of histories, and introducing what
    later became prequantization; Kostant introduced polarizations and the 
    prequantization scheme.
  * Relationships: One is really
    introducing a complex line bundle over Γ, with a connection ∇ of
    curvature iΩ (\(\hbar\) = 1).
Prequantization
  * Goal: Start with a phase
    space (Γ, Ω), of dimension 2n, such that Ω has a
    (local) potential A, and get a pre-quantum Hilbert space of states
    and a representation of the Poisson algebra of observables thereon.
  * Pre-quantum wave functions:
    Construct the vector space V of charged scalar functions \(\psi_A :
    \Gamma \to \mathbb C\) such that
ψA+df = exp(i f/\(\hbar\)) ψA
    (behavior under gauge transformations); i.e., cross sections of a \(\mathbb C\) line
    bundle over Γ, associated with the principal U(1) bundle with curvature Ω.
  * Pre-quantum Hilbert space:
    Define on V the gauge-invariant inner product
\(\langle\)ψ, φ\(\rangle\):= ∫Γ ψ*φ dvΩ .
* Covariant derivative: For each potential A, and charged scalar ψ ∈ V, define
∇aψA:= ∂aψA − (i/\(\hbar\)) AaψA .
* Pre-quantum operators: Define a 1-1, linear map from classical observables f to operators Of : V → V by
Of:= −i\(\hbar\) Xfa ∇a + f ;
    This preserves the Lie algebra structure, in the sense that
    [Of,
    Og]
    = −i\(\hbar\) O{f, g},
    and all operators are symmetric.
  @ References: Horváthy pr(80) [and path integrals];
    Andersson JFA(87) [in ∞-D];
    Kanatchikov gq/00-MG9 [covariant, field theory];
    Tuynman JGP(10)mp/03 [super symplectic manifolds];
    Zambon & Zhu JGP(07) [two approaches];
    Geraci a0911 [intro].
Quantization
  * Polarization: Choose some polarization P of Γ.
  * Quantum wave functions: Choose the
    elements of V that satisfy the polarization condition (new input here)
va ∇a ψ = 0 , for all va ∈ P .
  * Quantum Hilbert space: Choose
    a (new) inner product on quantum states (the pre-quantum one is ok in the
    case of a Kähler polarization), and get a Hilbert space \(\cal H\).
  * Good observables: Choose as
    allowed quantum operators those that act within \(\cal H\) (the BKS procedure
    can be used to construct good operators); This means requiring that the
    Hamiltonian vector fields preserve \(P\), i.e., "\(X_f^a\nabla_{\!a}\,P\)
    = 0" or
for all v ∈ P [Xf , v]a ∈ P , or [Of , va ∇a] ψ = 0 .
@ Polarization: Campbell & Dodson IJTP(79) [projective concepts]; Maraner RPMP(97)qp/98 [dynamical choice].
Examples > s.a. Jacobi Structure.
  * Spin system: Phase space
    Γ = S2; One cannot apply canonical
    quantization, but one can find a Kähler polarization.
  @ Harmonic oscillator: Lim JMP(07) [non-standard complex structure];
    Hedrea et al IJGMP(11);
    Iacob a1607 [harmonic-oscillator-type potentials].
  @ Other finite-dimensional systems: Robson JGP(96)ht/94 [particle in Yang-Mills field];
    Corichi & Ryan JPA(97)gq/95 [more than one H];
    Kimura PTP(98)ht/96 [on a coset space];
    Velhinho IJMPA(98)ht/97 [on T2];
    Gotay in(02)mp/00;
    Giachetta et al PLA(02)qp/01 [integrable system];
    Sardanashvily IJTP(03) [relativistic Hamiltonian];
    Hamilton & Miranda AIF-a0808 [integrable systems with hyperbolic singularities];
    Kemp & Veselov a1103
      [Dirac magnetic monopole on a unit sphere];
    Contreras & Duman EPTcs(17)-a1603 [epistemically restricted theories].
  @ T*G: Hall CMP(02)qp/00 [compact G].
  @ Field theory: Puta LMP(87) [electromagnetism, prequantization];
    Müller JGP(05);
    Shyam a1304 [canonical gravity];
    Clader et al a1309 [applications to Gromov-Witten theory];
    Biswas et al IJGMP(15)-a1411 [path space, Klein-Gordon theory];
    > s.a. QCD; quantum fields in curved spacetime.
References > s.a. approaches to quantum mechanics;
  {notes from AA's seminars}; Polymer Representation.
  @ General: Van Hove 51; Kostant in(70);
    Blattner in(74);
    Qiang JGP(96);
    Landsman mp/03-proc [functorial point of view].
  @ Reviews:
    Echeverría-Enríquez et al EM(98)mp/99 [foundations];
    Ritter mp/02 [short intro];
    in Todorov BulgJP(12)-a1206;
    Carosso a1801 [informal];
    Berktav a1902-proc [and Witten's quantum invariant];
    Camosso a2012 [intro].
  @ Texts: Simms & Woodhouse 76;
    Śniatycki 80;
    Hurt 82;
    Tuynman 85;
    in Ashtekar 88;
    Woodhouse 92;
    Nair a1606-ln;
    Moshayedi a2010-ln.
  @ Inequivalent quantizations: Robson PLB(94)ht;
    Govaerts & Villanueva IJMPA(00)qp/99 [different bundles];
    Lempert & Szőke CMP(14)-a1004.
  @ And coherent states: Klauder qp/95;
    Bartlett et al JPA(02)qp,
    JPA(02)qp;
    Florentino et al JFA(05)m.DG/04 [and coherent state transform];
    Kirwin JGP(07)m.SG/05.
  @ And deformation quantization: Hawkins CMP(00);
    Nölle a0809,
    a0903;
    Duval & Gotay RPMP(12) [deformation of prequantization].
  @ Related topics: Chernoff HJ(81) [obstructions];
    Guillemin & Sternberg IM(82);
    Klauder & Onofri IJMPA(89);
    Batalin & Tyutin NPB(90);
    Kirwin & Wu CMP(06) [and Fourier transform];
    Hochs & Mathai AiM(15)-a1309 [and families of inner products];
    Tejero & Vitolo IJGMP(14)-a1408 [geometry of the energy operator];
    Camosso JQIS(17)-a1508 [and quantum logic];
    Duval a1602
      [Souriau's derivation of the Weyl equation].
Variations > s.a. brst; quantum mechanics [geometric
  approaches]; symplectic structures, types
  and deformations [& Moyal].
  @ Approaches:
    Fradkin & Linetsky NPB(94) [BFV];
    Giachetta et al mp/00 [covariant];
    Hawkins m.SG/06 [grupoid approach];
    Charles CMP(07) [with metaplectic structure, semiclassical limit];
    Aldaya et al IJGMP(11)-a1012 [for non-linear systems];
    Patrascu PRD(14)-a1403 [using cohomology groups and the Universal Coefficient Theorem].
  @ Similar: Jorjadze JMP(97)ht/96;
    Isidro qp/01;
    Abrikosov et al MPLA(03)qp [and Koopman-von Neumann classical mechanics method].
  @ With constraints:
    Ashtekar & Stillerman JMP(86);
    Blau CQG(88),
    PLB(88);
    Batalin & Lavrov TMP(16)-a1505 [second-class constraints].
  @ Other extensions: Vaisman JGP(09) [weak-Hamiltonian functions];
    Fitzpatrick JGP(11) [for contact manifolds];
    Sharatchandra a1503 [torus phase space].
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 29 dec 2020