|  Integrable Quantum Systems | 
In General
  > s.a. coherent states; integrable classical systems;
  non-commutative theories; special potentials
  [exactly solvable, etc].
  * Idea: Quantum systems
    for which the energy spectrum can be explicitly computed.
  * Energy eigenvalues:
    The energies of the tori whose actions in the semiclassical limit are
    of the form (n + k/8) h, with n
    arbitrary and k some fixed integer [KAM theory; & Einstein;
    Brillouin; Keller; Maslov].
  @ General references: Kundu ht/96,
    ht/97-conf [rev];
    Prykarpatsky & Mykytiuk 98 [geometric];
    Hikami & Wadati JMP(03);
    Clemente-Gallardo & Marmo IJGMP(09)-a0808 [towards a definition];
    issue JMP(09)#9;
    Doikou et al IJMPA(10)-a0912
      [introduction, and quantum groups and the quantum inverse scattering method];
    Lamers PoS-a1501 [and high-energy physics];
    Combot a1609
      [general definition of integrability and classification].
  @ Quantization of classical integrable systems:
    Garay & van Straten a0802 [sufficient condition];
    Marino & Nekhoroshev a1001,
    a1001;
    Sharygin & Talalaev a1210 [deformation quantization].
  @ Related topics: Baldo & Raciti qp/95 [eigenstates along trajectories];
    Scotti & Ushveridze JMP(97)qp/96 [non-linear quantization];
    Kay PRA(04) [wave functions];
    > s.a. Inverse Scattering.
Types and Examples
  * Examples: Calogero-type
    (rational) & Sutherland-type (trigonometric).
  @ Calogero-Sutherland: Garcia et al JPA(01)mp [raising/lowering];
    Langmann CMP(04)mp/01 [second quantization].
  @ Bi-Hamiltonian systems: Cariñena et al IJMPA(00)mp/06;
    Marmo et al JPA(05),
  TMP(05)mp,
  NdM(04)mp/05 [and compatible Hermitian structures];
    > s.a. symplectic structures.
  @ Other examples: Calogero & van Diejen JMP(96);
    Haschke & Ruehl LNP(00)ht/98 [construction];
    Rodriguez & Winternitz JMP(02)mp/01 [in En];
    Yonezawa & Tsutsui JMP(06) [N = 3 Calogero, inequivalent];
    Danilov & Nagaitsev a1111 [and Ermakov transfrmations].
  @ Field theories: Schroer a1109 [dynamical and kinematical integrability];
    Bostelmann & Cadamuro CMP(15)-a1402 [characterization of local observables];
    Lamers PoS-a1506 [pedagogical, and high-energy physics].
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 21 oct 2018