|  2-Dimensional Quantum Gravity | 
Based on General Relativity
  > s.a. 2D gravity, quantum gravity / modified
  general relativity [strong coupling limit]; regge calculus.
  * Lorentzian vs Euclidean:
    The non-perturbative path integral can be computed exactly, and one sees that
    the two theories yield completely different results; The causal structure
    seems to play an important role.
  @ Reviews: Kummer gq/05-conf.
  @ General references: Rajeev PLB(82);
    Martinec PRD(84) [+ scalar matter];
    Hartle CQG(85);
    Knizhnik et al MPLA(88) [fractal structure];
    Awada & Chamseddine PLB(89) [partition function];
    Isler & Trugenberger PRL(89);
    Polchinski NPB(89);
    D'Hoker MPLA(91) [and Liouville];
    Weis PhD(97)ht/98 [topological];
    Ambjørn et al PLB(06)gq [and emergence of background geometry].
  @ Canonical:
    Banks & Susskind IJTP(84) [synchronous gauge];
    McKeon CQG(06).
  @ Canonical, with matter: Vergeles JETP(00)gq/01 [scalar + Majorana field];
    Mann & Young CQG(07)gq/06 [particles].
  @ Lorentzian vs Euclidean: Ambjørn & Loll NPB(98)ht;
    Aldaya & Jaramillo CQG(00)gq/99;
    Ambjørn et al CSF(99)ht/98,
    PLB(00)ht/99.
  @ Path integral: Muslih GRG(04) [Hamilton-Jacobi based];
    > s.a. regge calculus [measure].
  @ Path integral, Lorentzian: Loll et al NPPS(00)ht/99;
    Loll & Westra CQG(06)ht/03,
    APPB(03)ht-proc [sum over topologies].
  @ Spin foam: Livine et al CQG(03)gq/01 [manifold-independent];
    Oriti et al CQG(05)gq/04  [as constrained BF theory].
  @ Other approaches: Benedict PLB(94)gq [gauge theory and geometrical methods];
    Benedict et al PRD(96) [functional Schrödinger and BRST];
    Lavrov & Moshin CQG(99) [BV and BLT, with torsion].
  @ Simulations: Ambjørn et al PRD(99)ht [with matter],
    PRD(00)hl/99 [with conformal field theory, phase transitions].
  @ With Ising matter:
    Bowick et al PLB(97) [Hausdorff dimension].
  @ With cosmlogical constant: Govaerts ht/02 [cosmological constant quantization];
    Govaerts & Zonetti CQG(11)-a1102 [and scalar matter].
Related Topics
  > s.a. 2D black holes; spacetime topology.
  @ Time: Ambjørn et al JHEP(98)ht [and fractal dimension];
    Ambjørn et al a0911-proc [proper time is stochastic time].
  @ Branched polymer phase: Jonsson & Wheater NPB(98) [spectral dimension].
  @ Other topics: Ambjørn et al JHEP(99)hl/98 [correlations and order],
    PLB(06) [fluctuations and background geometry];
    Gliozzi PRL(11) [from quantum entanglement in a spin chain];
    Codello & D'Odorico PRD(15)-a1412 [scaling and renormalization].
Dilaton Theories
  > s.a. 2D gravity / dilaton theories.
  @ General references:
    Seiler & Tucker PRD(96) [reduced phase space];
    Louis-Martinez PRD(97) [exact states];
    Grumiller & Kummer gq/03-proc [background-independent].
  @ Dirac quantization: Louis-Martinez et al PLB(94)gq/93;
    Kuchař et al PRD(97)gq/96  [collapse];
    Laddha CQG(07)gq/06,
    CQG(07) [polymer quantization of CGHS model].
  @ Path integral: Kummer et al NPB(97)gq/96;
    Kummer et al NPB(98)ht/97,
    NPB(99)ht/98,
    Grumiller PhD(01)gq [with scalar matter];
    Meyer ht/06-MGXI [with Dirac fields];
    Bergamin & Meyer a0711-proc [with boundary].
  @ Trace anomaly: Bousso & Hawking PRD(97)ht,
    comment Kummer et al PRD(98)ht.
Other Theories
  > s.a. 2D gravity; Liouville
  Theory; non-commutative field theory.
  @ General references: Strobl PRD(94) [R2 gravity + Yang-Mills];
    Amelino-Camelia et al PLB(95)ht [area-preserving diffeomorphisms and anomalies];
    Cherkas & Kalashnikov GRG(12)-a1107 [inhomogeneous model].
  @ Jackiw-Teitelboim theory: 
    Constantinidis et al PRD(09)-a0812;
    Iliesiu et al a1905;
    Cotler et al a1905;
    Mertens & Turiaci JHEP(19)-a1904 [defects].
  @ Related topics:
    Polyakov & Zamolodchikov MPLA(88) [fractal structure];
    Sengupta CQG(14)
      [asymptotically flat, parametrized scalar field];
    Rotondo & Nojiri MPLA(17)-a1703 [discrete toy model].
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 8 sep 2019