|  Dirac Quantization of First-Class Constrained Systems | 
In General > s.a. quantum particle models.
  * Idea: Impose the constraints
    as operators on functions Ψ: Γ → \(\mathbb C\) (this requires
    a choice of operator ordering and regularization); Their kernel defines physical
    states, and only on these we define an inner product such that the observables
    are selfadjoint.
  * Example: Wave functions
    are densities of weight 1/2 on phase space, which have to satisfy
    (va
    Pa) ψ
    = −i\(\hbar\) \(\cal L\)v
    ψ(q) = 0, and the Hamiltonian is different,
H = −\(\hbar\)2 gab ∇a∇b + potential = −\(\hbar\)2 gab Da Db − \(\hbar\)2 λ−1 (Dbλ) Db + potential .
  * Remark: An anomaly
    in the commutators would mean, e.g., that the wave function on a
    given surface depends on gauge equivalent paths used to get there!
  * Criticism: Might lead
    to non-normalizable states if the gauge orbits are non-compact.
  @ General references: Dirac CJM(50);
    Bergmann HPA(56);
    Dirac PRS(58),
    PR(59),
    64;
    Matschull qp/96 [review];
    Deriglazov PLB(05) [without primary constraints];
    Lantsman a1110
      [Dirac variables and gauge-invariant and Poincaré-covariant states];
    Kiriushcheva et al a1112 [field-parametrization dependence].
  @ Geometric version: Tulczyjev SM(74);
    Lichnerowicz CRAS(75);
    Barvinsky gq/96;
    Gozzi NPPS(97)dg;
    Lian et al a1703 [geometric potential].
  @ Objections, problems:
    Shanmugadhasan JMP(73); Kundt.
  @ Applications, examples: DeWitt PR(67);
    Kuchař PRD(89);
    Hájíček CQG(90) [quadratic constraint];
    Hájíček & Kuchař PRD(90),
    JMP(90)
      [quadratic + linear constraints, operator ordering and transversal affine connection];
    Montesinos et al PRD(99)gq [2 non-commuting Hamiltonian constraints];
    Mišković & Zanelli JMP(03) [irregular systems];
    Rosenbaum et al JPA(07)ht/06 [spacetime non-commutative theories];
    Barbero et al CQG(19)-a1904 [with boundaries];
    > s.a. modified electromagnetism; parametrized theories.
Refined Algebraic Quantization
  * Idea: A variation of the
    Dirac prescription, motivated by the fact that in many cases, physical states
    of interest are not in \(\cal H\)kin;
    Given a kinematical \(\cal H\)kin,
    instead of imposing constraints on the kinematical states to get physical
    ones, rig \(\cal H\)kin to obtain Ω
    ⊂ \(\cal H\)kin⊂ Ω*, and
    choose a suitable \(\cal H\)phy ⊂ Ω*,
    with inner product (η(ψ1),
    η(ψ2)):=
    η(ψ2)[ψ1],
    where η is the rigging map; One also defines an action of physical observables;
    The rigging map can be defined when the constraints form a Lie algebra (not an algebra
    with non-trivial structure functions).
  @ General references: Marolf gq/95;
    Embacher gq/97-MG8,
    HJ(98)gq/97;
    Giulini & Marolf CQG(99)gq/98,
    CQG(99)gq;
    Giulini NPPS(00)gq [rev];
    Louko & Martínez-Pascual JMP(11)-a1107 [constraint rescaling];
    Martínez-Pascual JMP(13)-a1305 [with non-constant gauge-invariant structure functions].
  @ Specific theories: Ashtekar & Tate JMP(94)gq [examples];
    Louko & Rovelli JMP(00)gq/99 [SL(2, \(\mathbb R\)) gauge theory];
    Shvedov ht/01 [systems with structure functions];
    Louko & Molgado CQG(05)gq [Ashtekar-Horowitz-Boulware model];
    Rumpf gq/97
      [relativistic particle in curved spacetime];
    Gambini & Olmedo CQG(14)-a1304 [totally constrained model, and other quantization methods].
Group Averaging
  * Try: Do the case C
    = px + α
    py on T2,
    with α irrational.
  * Idea: An implementation of the
    refined algebraic quantization method, which one can use (modulo expression
    being well-defined) when the constraint algebra closes, but has been formally
    used even in a more general case.
  * Prescription:
    Define the rigging map η: Ω → Ω*
    by (|ψ\(\rangle\) ∈ Ω) \(\mapsto\)
    (ψ|:= V−1
    ∫ dμG(g)
    \(\langle\)ψ| U(g), with U a representation of G.
  @ References:
    Giulini NPPS(00)gq [rev];
    Marolf gq/00-MG9;
    Marolf PRD(09)-a0902 [perturbation theory for rigging map].
  @ Non-compact groups: Gomberoff ht/00-MG9;
    Louko JPCS(06)gq/05.
  @ Examples: Gomberoff & Marolf IJMPD(99)gq [SO(n,1)];
    Louko & Molgado JMP(04)gq/03
      [(p, q)-oscillator representation of SL(2, \(\mathbb R\))],
    IJMPD(05)gq/04 [subgroup of SL(2, \(\mathbb R\))];
    Kamiński et al CQG(09)-a0907 [lqc-relatedexamples];
    > s.a. quantum klein-gordon theory.
Other Approaches and Comparisons
  > s.a. canonical quantum mechanics [group quantization].
  * Master constraint approach: Replace
    the individual constraints by a weighted sum of absolute squares of the constraints.
  @ Master constraint approach: Dittrich & Thiemann CQG(06)gq/04 [framework],
    CQG(06)gq/04 [finite-dimensional],
    CQG(06)gq/04 [SL(2, \(\mathbb R\)) models],
    CQG(06)gq/04 [free field theories],
    CQG(06)gq/04 [interacting field theories];
    Han & Thiemann JMP(10)-a0911 [and refined algebraic quantization];
    > s.a. loop quantum gravity.
  @ And reduced phase space:
    Buchbinder & Lyakhovich TMP(89) [including inner product];
    Mladenov IJTP(89);
    Romano & Tate CQG(89);
    Loll PRD(90);
    Schleich CQG(90);
    Kunstatter CQG(92);
    Ordóñez & Pons PRD(92),
    JMP(95)ht/93;
    Plyushchay & Razumov IJMPA(96)ht/93,
    ht/94-conf;
    Epp PRD(94);
    Vathsan JMP(96)ht/95 [for simple gauge theory];
    Shimizu PTP(97)gq/96;
    > s.a. dirac quantum field theory.
  @ And path integral: Faddeev TMP(69);
    Maskawa & Nakajima PTP(76);
    Hájíček JMP(86)
[path-integral version of the projector];
    Blau AP(91);
    Cabo et al PLB(91);
    Halliwell & Hartle PRD(91);
    Govaerts JPA(97)ht/96 [phase-space coherent states];
    Barvinsky NPB(98)ht/97,
    PLB(98)ht/97 [solution];
    Han & Thiemann CQG(10)-a0911 [and master constraint and reduced phase space].
  @ And Faddeev-Jackiw approach:
    García & Pons IJMPA-ht/96,
    IJMPA(98)ht;
    Liao & Huang AP(07);
    Manavella IJMPA(14)
      [composite particles, with Grassmann dynamical variables];
    > s.a. Stückelberg Model.
  @ And other approaches: in Faddeev & Slavnov 80 [BRST];
    Barvinsky & Krykhtin CQG(93) [BFV, 1-loop];
    Ogawa et al PTP(96)ht/97 [Schwinger];
    Louis-Martinez PLA(00) [and Moyal];
    Shvedov AP(02)ht/01 [BRST-BFV];
    Lantsman FizB(09)ht/06 [and Faddeev-Popov].
  @ Related topics: Tuynman JMP(90) [modified];
    Barvinsky CQG(93) [operator ordering];
    Tate PhD(92)gq/93 [algebraic approach];
    Seiler & Tucker JPA(95) [from the pde point of view];
    Rovelli gq/97 [space of solutions];
    Kempf & Klauder JPA(01)qp/00 [0 ∈ continuous spectrum and projection];
    Brody et al JPA(09)-a0903 [variant, metric approach].
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 1 oct 2019