|  Particles: Quantum Description | 
Non-Relativistic Particle
  > s.a. quantum mechanics and modified quantum mechanics;
  particles; quantum systems; wigner
  function.
  @ General references: Vaidman PRA(13)-a1304 [the past of a quantum particle];
    Dreyfus et al a1507-proc
      [PER: students negotiating the boundary with classical particles];
    Nisticò a1811 [alternative approach to quantization];
    Das a1812 [quantifying the particle nature of a quantum state];
    Kuzmichev & Kuzmichev a2007 [classicality conditions].
  @ Special situations: Kuchař PRD(80) [in a Newtonian gravitational field, coordinate-independent];
    Alba IJMPA(06)ht/05 [in non-inertial frames];
    Louko GRG(15)-a1404 [Hamiltonian with a quantum-gravity-motivated \(p^3\) correction term];
    Carlone et al a1407 [in a quantum environment of localized spins];
    Lian et al AdP(18)-a1703
      [particle on a hypersurface, geometric potential in Dirac quantization].
Relativistic Particle
  > s.a. particle statistics; path integrals.
  * Dirac quantization:
    Gives p2 |ψ\(\rangle\) = 0, or
    ∂a∂a
    ψ = 0, the Klein-Gordon equation.
  * Faddeev method:
    Gives x0 = t,
    p0 = (pi
    pi)1/2
    (gauge fixing), and i ∂tψ
    = H*ψ.
  * Difficulty: Localizing the
    particle in a region smaller than its mass gives rise to particle creation,
    and thus the need for a description with a variable particle number, which
    leads to quantum field theory.
  @ Canonical / Dirac quantization:
    Sutton PhD(67)-IJTP(07);
    Benn & Tucker PLA(91);
    Welling NPPS(97)gq,
    CQG(97)gq,
    Matschull & Welling CQG(98)gq/97 [2+1];
    Wu JMP(98) [Yang-Mills background];
    Hong et al MPLA(00)qp/99;
    Gavrilov & Gitman CQG(00)ht;
    Von Zuben JMP(00) [and localization];
    Pavšič CQG(03)gq/01 [operator ordering];
    Freidel et al PRD(07)ht [algebra of Dirac observables and DSR].
  @ Proper-time parametrization: Cooke PR(68);
    García Álvarez & Gaioli IJTP(99)ht/98 [vs hyperplane];
    Gill et al JPCS(15)-a1503.
  @ Path integral, Minkowski space: Ikemori PRD(89);
    Gür FP(91);
    Guven & Vergara PRD(91);
    Tuite & Sen MPLA(03)ht-conf [closed worldlines];
    Chiou CQG(13)-a1009 [timeless].
  @ Path integral, decoherent histories:
    Halliwell & Thorwart PRD(01)gq;
    Koch & Muñoz a2012.
  @ Spin-1/2 particle: Brody & Hughston PRS(99)gq/97 [in heat bath];
    Alscher & Grabert JPA(99)qp [in a magnetic field];
    Ghosh JMP(01)ht [Batalin-Tyutin];
    Yuan et al IJTP(10) [in a magnetic field, Wigner function];
    Alberto et al PLA(11)-a1102 [Dirac particle in a 3-dimensional box];
    Azevedo et al AP(15)-a1506 [in an external electric field];
    > s.a. quantum correlations.
  @ Other spinning: Jarvis et al JPA(99)ht;
    Keppeler PRL(02) [torus/semiclassical quantization];
    Bastianelli et al JHEP(05) [spin-2, supersymmetric];
    Kalmykov et al JPA(08) [phase space equilibrium distribution function];
    Seidewitz AP(09)-a0804 [spacetime path formalism];
    Nieto & Pérez-Enríquez a1102 [on a Möbius strip];
    Michel CMP(15)-a1208 [conformally equivariant quantization];
    Deguchi et al IJMPA(14)-a1309 [massless, twistor model];
    Simulik a1409 [arbitrary mass and spin, canonical];
    Horwitz & Zeilig-Hess JMP(16)-a1502 [covariant induced representations of tensors and spinors of any rank];
    Bastianelli et al a1504-proc [with higher spin];
    Corradini & Schubert a1604-ln [path-integral approach];
    Rempel & Freidel PRD(17)-a1609 [bilocal model in terms of two entangled constituents];
    Fröb & Verdaguer JCAP(17)-a1701 [one-loop quantum corrections];
    Morales et al EPJC(19)-a1910 [massless, charged];
    Obukhov a1912-proc [in external fields, formalism];
    Kowalski-Glikman & Rosati PRD(20)-a1912 [arbitrary spin, path-integral quantization];
    Horwitz a2009
      [Stückelberg-Horwitz-Piron theory in general relativity];
    > s.a. relativistic quantum mechanics [spin operators].
  @ Related topics:
    Cariñena et al JPA(90) [phase space];
    Fanchi FP(94) [wave equation];
    Mazur APPB(95)ht/96 [gravitating];
    Ruffini gq/98 [approaches];
    Razmi & Abbassi MPLA(00)gq [modified commutation relations for m = 0];
    Suzuki et al ht/04 [light-front quantization];
    Seidewitz JMP(06)qp/05,
    qp/05-wd [spacetime path formalism; localized states];
    Djama PS(07) [quantum trajectories];
    Cariñena et al a0912-in [in the field of a magnetic monopole];
    Stern PLA(11)-a1011 [alternative quantizations with discrete position and time];
    Rusov & Vlasenko a1202-conf [and Stückelberg equation];
    Katz IJMPA(19)-a1804 [worldline length operator].
  > Related topics:
    see 3D quantum gravity; BRST; fock space;
    quantum effects [time of arrival]; uncertainty principle.
In Curved or Quantum Spacetime
  > s.a. relativistic quantum mechanics; quantum
  fields in curved spacetime; singularity types [as probes].
  @ General references:
    Kalinin gq/97 [s = 0, canonical];
    Alsing et al GRG(01) [s = 0, 1/2, 1; WKB];
    Gavrilov & Gitman CQG(01)ht;
    Piechocki CQG(04)gq/03 [on hyperboloid];
    Tagirov qp/01-conf [canonical/path integral];
    Hong & Rothe AP(04)ht/03 [on Sn−1, Hamilton-Jacobi];
    Obukhov et al PRD(13).
  @ 3D: Cariñena et al JMP(12)-a1211 [spherical and hyperbolic spaces, curvature-dependent approach];
    Arzano et al CQG(14)-a1305 [coupled to Einstein gravity, curved momentum space
      and deformed algebra of creation and annihilation operators in Fock space];
    Struyve GRG(21)-a2012 [Wheeler-DeWitt quantization].
  @ Path integral: Cheng JMP(72);
    Ferraro PRD(92);
    Krtouš CQG(04)gq/00.
  @ (Anti-)de Sitter space: Piechocki gq/01,
    CQG(03)gq/02 [dS, different topology];
    Lucietti JHEP(03)ht [AdS3];
    Gazeau & Piechocki JPA(04)ht/03 [dS, coherent state];
    Gazeau et al gq/05 [2D dS, methods].
  @ Other specific types of spacetimes: Deser & Jackiw CMP(88) [on 2+1 conical spacetime, scattering];
    Siopsis PRD(00)ht [near extreme Reissner-Nordström];
    Muniz et al AP(14)-a1403 [in a rotating cosmic string spacetime];
    Lienert & Tumulka a1805
      [relativistic quantum theories with a fixed number of particles in FLRW spacetimes];
    > s.a. particles in schwarzschild spacetime.
  @ Non-commutative space:
    Bigatti & Susskind PRD(00)ht/99 [plane];
    Adorno et al PRD(10)-a1008 [non-relativistic];
    Lu & Stern NPB(12)-a1110 [Snyder space].
  @ Quantum / generalized spacetime: Naudts & Kuna JPA(01)ht/00;
    Kull PLA(02);
    Canarutto IJGMP(05)mp-proc ["quantum bundles"];
    Santos PLA(06)qp/05 [in random spacetime, and the Schrödinger equation];
    Nicolini & Niedner PRD(11)-a1011 [Hausdorff dimension of path];
    Farrelly & Short PRA(14)-a1312 [single quantum particle in discrete spacetime];
    > s.a. Non-Archimedean Structures.
And Quantum Field Theory
  > s.a. Bosons; fermions;
  fock space [number operator]; particle physics
  [theories]; QED; quantum field theories.
  @ Particles and localization:
    Newton & Wigner RMP(49);
    in Feynman 62;
    Hegerfeldt PRL(85);
    Buchholz et al PLB(91);
    Horwitz & Usher FPL(91);
    Clifton & Halvorson BJPS(01)qp/00;
    Barat & Kimball PLA(03)qp/01 [save causality];
    Wallace qp/01 [bosonic];
    Halvorson & Clifton PhSc(02)qp/01  [support for Malament's argument];
    Comtet et al JPA(05) [random environment, and graphs];
    > s.a. localization.
  @ Particle dynamics: Hu & Johnson qp/00-conf [Unruh effect, non-equilibrium];
    Johnson  & Hu qp/00-conf,
    qp/00;
    > s.a. quantum field theory effects in curved spacetime.
  @ Related topics:
    Woodard gq/98 [particle masses];
    Wu et al AP(12)-a0809 [and electromagnetic squeezed vacuum];
    Belokurov & Shavgulidze a1511 [masses and functional measures];
    > s.a. causality; Singletons.
Other Quantum Models and Generalizations
  > s.a. Landau Model; membranes [higher-dimensional];
  Topological Particle Theory; twistors.
  * Quantum deformed mass shell:
    Defined by (2κ sinh{p0
    / 2κ})2
    − pi
    pi
    = m2.
  @ Infraparticles, particle weights: Buchholz & Porrmann; Porrmann
    PhD(99)ht/00,
    CMP(04)ht/02,
    CMP(04)ht/02.
  @ Superparticle:
    Galvão & Teitelboim JMP(80) [classical];
    Brink et al NPB(87);
    Dur PLB(88) [BRST];
    Kowalski-Glikman et al PLB(88) [spinning];
    Bengtsson PRD(89);
    Bergshoeff & Van Holten PLB(89);
    Au & Spence MPLA(94) [covariant phase space];
    Schray CQG(96)ht/94 [9+1 spacetime solution];
    Nielsen & Nielsen AP(00)ht;
    Hatsuda et al JHEP(09)-a0812 [4D N = 4];
    Mezincescu & Townsend Sigma(11)-a1011-proc [3D N = 1];
    McKeon a1209 [massless, canonical analysis];
    Mezincescu et al JPA(14);
    Bergshoeff et al PRD(14)-a1406 [non-relativistic, in a curved background].
  @ Superparticle, covariant:
    Lindström et al JMP(90);
    Chesterman JHEP(04)ht/02 [10D].
  @ And quantum gravity: 't Hooft CQG(96)gq [2+1, and spacetime discreteness];
    Dalvit & Mazzitelli PRD(97)ht [corrected motion].
  @ Quantum deformed: Lukierski et al AP(95);
    Sánchez et al IJMPA(08)-a0705 [with electromagnetic fields];
    > s.a. deformation quantization.
  @ Related topics: Gudder IJTP(86) [in terms of graphs];
    Rogers NPPS(00)ht,
    CQG(00)ht [topological, BRST quantization];
    Balasubramanian & Larsen NPB(97) [branes];
    Christian mp/04 [representations over adele rings];
    Stoilov CEJP(07)ht [fermions as U(1) instantons];
    Wetterich a0904,
    AP(10),
    IJTP(12)-a1003 [from classical probabilities],
    PLA(12)-a0911
      [Zwitters, common classical statistical mechanics setting for classical and quantum particles].
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 27 mar 2021