|  Uncertainty Relations in Quantum Theory | 
In General > s.a. equivalence principle;
  fluctuations [including classical uncertainty relations];
  locality in quantum theory; physics teaching.
  * Idea: Some observables can have no
    uncertainty, but not all of them, and any change in the expectation value of an
    observable quantity must be associated with some degree of uncertainty.
  * Heisenberg's version: A lower bound for
    the product of the measurement error and the disturbance, stating that in observing the
    world we inevitably disturb it by introducing an unavoidable recoil; In the Heisenberg
    form the principle is valid only under certain circumstances, but a new universal
    error-disturbance relation has been proposed.
  * Later version: The uncertainty relation
    was later reformulated in terms of standard deviations, where the focus was exclusively
    on the indeterminacy of predictions.
  * Beating the quantum uncertainties: Some
    proposals have been made of types of measurements that have an effect smaller than the
    standard uncertainty, for example weak measurements.
  @ General references:
    DeWitt JMP(62) [and commutation relations];
    Hilgevoord & Uffink FP(91) [in prediction and inference];
    Franson PRA(96) [and changes of expectation values];
    Hilgevoord AJP(02)oct [and standard deviation];
    Busch et al PRP(07)qp/06 [rev, conceptual];
    Marburger AJP(08)jun [re early derivation];
    Dumitru PiP(10)-a1005;
    Fujikawa & Umetsu PTP(11)-a1012 [and probability];
    Partovi PRA(11) [and majorization theory];
    Matía-Hernando & Luis PRA(12) [different measures of quantum uncertainty];
    Dumitru a1205;
    Li et al JPA(14)-a1302 [as inequality for bipartite correlation functions, and experiment];
    de Gosson JPA(13)-a1303 [in the Born-Jordan quantization scheme];
    news pw(13)may [tradeoff between measurement uncertainties];
    Dumitru a1501;
    Narasimhachar et al NJP(16)-a1505 [general framework];
    Ozawa a1507-conf;
    Busch & Reardon-Smith a1901 [uncertainty region];
    Werner & Farrelly FP(19)-a1904 [overview, meanings];
    Wigderson & Wigderson a2006 [variations];
    Urbanowski Symm(20)-a2010;
    Cazacu et al a2012 [mathematical];
    Duan a2103 [interpretation].
  @ For mixed states: Andersson & Heydari JMP(14)-a1302,
    PS(15)-a1412;
    Belfield & Brody a2012 [higher-order uncertainty bounds].
  @ Approaches:
    Ivan et al a1205 [invariant theoretic approach];
    Renes et al Quant(17)-a1612 [operational approach];
    Mann et al a2005 [successive measurements].
  @ Universal form / general theory:
    Deutsch PRL(83) [non-canonically-conjugate variables];
    Friedland et al PRL(13)-a1304;
    Kechrimparis & Weigert JPA(16)-a1509;
    Bagchi & Pati PRA(16)-a1511 [arbitrary unitary operators];
    Li et al SRep(16)-a1610;
    Huang & Huang a1807 [in different quantum theories].
  @ Quantum vs classical uncertainties:
    Cini & Serva PLA(92);
    Luo TMP(05);
    Beretta PhD(81)qp/05 [quantum thermodynamics];
    Busch PS(10)-a1004-conf;
    Huang & Huang PLA(10) [classical statistical and quantum uncertainty relations];
    Usha Devi & Karthik AJP(12)aug-a1108 [in the classical limit];
    Berta PhD(13)-a1310 [quantum side information];
    Gattus & Karamitsos EJP(20)-a2102 [dimensional analysis];
    > s.a. diffusion; fluctuations.
  @ From lack of information: Rozpędek et al NJP(17)-a1606;
    Zhao et al a2105 [tests].
  @ Origin of uncertainties: Anderson & Halliwell PRD(93)gq [quantum + thermal fluctuations];
    Wesson GRG(04)gq/03 [from higher dimensions];
    Arbatsky qp/06 [derivation from "certainty principle"];
    Downes et al a1108 [uncertainty relation for the spacetime metric];
    Fujikawa PRA(12)-a1205
      [incorporating both intrinsic quantum fluctuations and measurement effects];
    Girolami et al PRL(13)-a1212 [intrinsic quantum uncertainty on a single observable];
    Thuan a1507 [spacetime curvature];
    Adami a2005-FQXi
      [from the indeterminism inherent in mathematical logic].
  @ Beating the quantum uncertainties: Polzik & Hammerer AdP(15)-a1405 [trajectories without quantum uncertainties];
    > s.a. types of measurements.
  @ Uncertainty conservation relations:
    Wang et al a1711 [theory and experiment].
  > Related topics: see histories formulations;
    mixed states; optics; Reference
    Frame; semiclassical states [minimal-uncertainty].
Configuration-Momentum Uncertainty Relations
  > s.a. modified and deformed relations
  [including entropic]; phenomenology [systems, tests, violations].
  * Idea: In any preparation of a
    system, uncertainties are constrained to satisfy Δq Δp
    ≥ \(\hbar\)/2; In the usual approach to quantum theory, the bound can be traced
    back to the [q, p] commutation relations.
  * In terms of creation-annihilation:
    The uncertainty relation is expressed by \(\langle a^\dagger a\rangle \ge \langle
    a^\dagger \rangle \langle a\rangle\).
  @ General references: Heisenberg ZP(27);
    Schrödinger SPAW(30),
    translation BulgJP-qp/99;
    Gamow SA(58)jan;
    Lévy-Leblond AJP(72)jun [non-simultaneous measurements];
    Fefferman BAMS(83);
    Landsberg FP(88) [and classical and quantum mechanics];
    Chisolm AJP(01)mar-qp/00 [restrictions];
    D'Ariano FdP(03)qp/02;
    Rigolin EJP(15)-phy/05 [derivation];
    Schürmann & Hoffmann FP(09)-a0811;
    Mandilara & Cerf PRA(12)-a1201;
    Hedenmalm JAM(12)-a1203 [in the sense of Beurling];
    Rudnicki PRA(12) [sharper bounds
      for σrσp];
    Busch et al PRA(14)-a1311 [for qubit measurements],
    JMP(14)-a1312 [measurement uncertainty relations];
    Boughn & Reginatto EJP(18)-a1712 [revisiting Heisenberg's microscope];
    > s.a. localization.
  @ For angular momentum:
    Franke-Arnold et al NJP(04);
    Dürr pw(04)oct;
    Dammeier et al NJP(15)-a1505;
    Lake et al Univ-a1912 [in quantum geometry].
  @ And phase space geometry: Curtright & Zachos MPLA(01)ht;
    Anastopoulos & Savvidou AP(03)qp;
    de Gosson PLA(03) [phase-space quantization],
    qp/04 ["quantum blobs"],
    mp/06 [and symplectic non-squeezing];
    de Gosson & Luef PRP(09) [symplectic capacity];
    de Gosson FP(12)-a1106;
    Werner a1601-proc [for general phase spaces];
    > s.a. phase space.
  @ And complementarity:
    Uffink & Hilgevoord PhyB(88)qp/99;
    Björk et al PRA(99)qp;
    Basso & Maziero a2007.
  @ In terms of information:
    Gibilisco & Isola mp/05,
    JMP(07)mp,
    Chakrabarty APS(04)qp/05,
    Sánchez-Moreno et al JPA(11) [and Fisher information].
  @ Error-disturbance relation: Brown & Redhead FP(81); Hofmann PRA(03)qp/02;
    Wulleman PE(03)qp/06,
    CoP(06)#3;
    Rozema et al PRL(12)
    + news UT(12)sep [violation in weak measurements of photons];
    Busch et al PRL(13),
    a1402
      [proof of Heisenberg's relation, as characterizing measuring devices];
    Ipsen a1311 [for finite-dimensional systems];
    news pw(13)nov [uncertainty vs disturbance debate];
    Ozawa a1403-proc [reformulation];
    Bastos et al PRD(14)-a1406 [phase-space non-commutative formulation];
    Dressel & Nori PRA(14) [definitions of error and disturbance];
    Fujikawa et al PRA(15)-a1412 [and Hardy's paradox];
    Ozawa a1505 [interpretation];
    Nishizawa & Chen a1506 [universal form];
    Zhao et al PRA(17)-a1512 [quantum-walk-based  experimental test];
    Inoue & Ozawa a2009 [violation by Stern-Gerlach measurements].
  @ And entanglement: Rigolin FPL(02)qp/00,
    qp/01;
    Hari Dass et al IJMPB(13)-a1107 [for entangled states];
    Berta et al PRA(14)-a1302 [relation between entanglement and uncertainty].
  @ Related topics:
    Landsberg Mind(47) [philosophy];
    Yu PLA(96);
    Hewitt-Horsman qp/03 [and many worlds];
    Sarris et al PLA(04) [as invariant of motion];
    Busch & Pearson JMP(07) [for error-bar widths];
    Kryukov PLA(07)-a0710 [geometric];
    Zozor et al PRA(11)-a1112 [uncertainty relations based on moments of arbitrary  order];
    Rudnicki et al PRA(12)-a1204 [for coarse-grained measurements];
    Malbouisson PRA(13)-a1307 [in a cavity at finite temperature];
    Tomassini & Viaggiu CQG(14)-a1308 [spacetime uncertainty relations];
    Bosyk et al PRA(14) [geometric];
    Majumdar & Pramanik a1410-proc [applications in quantum information];
    Li & Qiao SRep-a1502 [new form];
    Kechrimparis & Weigert JPA(18)-a1703 [linear combinations of position and momentum observables];
    Pollack & Miret-Artés PRA(19)-a1808 [for time averaged weak values];
    Huang et al ChPB(18)-a2003 [new product forms];
    > s.a. Gerbe [reformulation].
Time-Energy Uncertainty Relation
  > s.a. mixed states; time in quantum mechanics.
  @ General references:
    Aharonov & Bohm PR(61);
    Kijowski RPMP(76);
    Sorkin FP(79);
    Busch FP(90),
    FP(90);
    Kobe & Aguilera-Navarro PRA(94);
    Pfeifer & Fröhlich RMP(95);
    Hilgevoord AJP(96)dec,
    AJP(98)may;
    Busch in(02)qp/01 [types, history];
    Brunetti & Fredenhagen RVMP(02)qp [rigorous derivation];
    Miyadera FP(16)-a1505,
    comment Yasuda a1809 [in quantum measurements];
    Kieu PRS(19)-a1702 [time-dependent Hamiltonians];
    Urbanowski MPLA-a1810,
    a1908-conf [not universally valid];
    Bertoni et al NJP(20)-a2001 [entropic, algebraic approach];
    Campaioli a2004-PhD
      [improved bounds on the speed limit of quantum evolution];
    Roberts & Butterfield JPCS(20)-a2007 [it does not allow particle creation].
  @ Time-mass: Kudaka & Matsumoto JMP(99)qp [τ and m as operators];
    Ram mp/02;
    Dodonov & Dodonov PS-a1504 [exact inequalities].
  @ Related topics: Pegg PRA(98) [operator conjugate to H];
    Aharonov et al PRA(02)qp/01 [and estimating the Hamiltonian];
    Gillies & Allison FPL(05) [time-temperature];
    Karkuszewski qp/05 [upper bound on uncertainties];
    Denur AJP(10)nov [and quantum phenomena].
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 20 may 2021